Part 1
Basic notions

1 Rings

A ring R is an additive group equipped with a multiplication R x R — R,
(r,s) — rs, which is associative (rs)t = r(st), bilinear r(s 4+ s') = rs 4+ rs’ and
(r+1")s = rs+1's, and unital, so there exists 1 € R with 1r = r = r1 for all
rec R

Example 1.1. The ring of integers Z, as well as any field k, are commutative
rings, so rs = sr for all elements r,s. Matrices over a field M, (k) form a
non-commutative ring. If R is a ring, then we have the ring Rt] of polynomials
with coefficients in R.

A ring homomorphism f: R — S is a map of abelian groups which is com-
patible with the multiplicative structures, so f(rr') = f(r)f(r') and f(1g) = 1.
The composition of two ring homomorphisms is again a ring homomorphism,
composition is asociative, and the identity map on R is a ring homomorphism
(so we have a category of rings). We say that f is an isomorphism if there exists
a ring homomorphism ¢g: S — R with ¢gf = idg and fg = idg.

1.1 Subrings and ideals

Given a ring R, a subring is an additive subgroup S C R containing the identity
and which is closed under multiplication, so 1z € S and s, s’ € S implies ss’ € S.
Thus S is itself a ring, and the inclusion map S — R is a ring homomorphism.

A right ideal I < R is an additive subgroup which is closed under right
multiplication by elements of R, so € I and r € R implies xr € I. Similarly
for left ideals and two-sided ideals. Given a two-sided ideal I <@ R, the additive
quotient R/T is naturally a ring, via the multiplication 7 5 := 73, and the natural
map R — R/I is a ring homomorphism.

Given a ring homomorphism f: R — S, its kernel Ker(f) :={r € R: f(r) =
0} is always a two-sided ideal of R, its image Im(f) is a subring of S, and there
is a natural isomorphism R/ Ker(f) = Im(f).

Example 1.2. The centre Z(R) of a ring R is always a commutative subring
Z(R):={re€R:sr=rs forallsé€R}.

A division ring R is one where every non-zero element has a (two-sided) inverse,
so r # 0 implies there exists s € R with rs =1 = sr. A field is the same thing
as a commutative division Ting.

Let k be a commutative ring. A k-algebra is a ring R together with a fixed
ring homomorphism k — Z(R). Note that every ring is uniquely a Z-algebra.
We will mostly be interested in k-algebras when k is a field.



1.2 Idempotents

An idempotent in a ring R is an element e € R such that 2 = e. Clearly 1g
and 0 are idempotents. If e is an idempotent, then so too is € := 1 — e, and
ee’ =0=~¢e.

If e € R is an idempotent, then eRe is again a ring, with the induced
multiplication and identity e. Thus eRe is in general not a subring of R.

Given two rings R and S we can form their direct product R X .S, which
is a ring via the multiplication (r,s) - (r',s") := (rr’,ss’). Note that this has
unit (1g,1g). Moreover, the element e := (1g,0) is a central idempotent, and
R = e(RxS)e. Conversely, if e € R is a central idempotent, then R is isomorphic
to the direct product eRe x ¢’ Re'.

We say that R is indecomposable if it is not isomorphic to a direct product,
equivalently if it has no non-trivial central idempotents.

1.3 Local rings

A ring R is called local if the set of non-invertible elements of R forms an ideal
I < R, equivalently if R has a unique maximal right (or left) ideal. In this
case R/I is necessarily a division ring. If R is local, then it has no non-trivial
idempotents. (If e # 0,1 is an idempotent, then since ee’ = 0, both e and €’ are
non-invertible, and hence their sum e+e’ = 1 is non-invertible, a contradiction.)

A discrete valuation ring, or DVR, is a commutative local domain R con-
taining a non-zero element ¢ such that every ideal is of the form t"R. (Recall
that R is a domain if it has no proper zero divisors, so s = 0 implies = 0 or
s=0.)

One example of a DVR is the ring of formal power series k[t], where & is a
field. This has elements ) -, ant™ with a, € k, and the obvious addition

Z ant" + Z bot" = Z(an + b )t"

n

and multiplication

(Zant”)(ant") = Z( Z aibj)t".

n i+j=n

The maximal ideal is precisely those elements ) a,t™ with ag = 0.

More generally, a principal ideal domain, or PID, is a commutative domain
R such that every ideal is principal, so of the form rR for some r € R. The
basic example of a PID is the ring of integers Z, and many results extend from
Z to every PID. For example, we say that p € R is prime provided R/pR is a
field, we say r divides s, written r|s, provided sR < rR.

Then every non-zero element » € R can be written essentially uniquely as a
product of primes, so r = upy"* ---pI* with p; distinct primes (so p;R # p;R
for i # j), m; > 1 and u € R invertible.

Let R be a PID. Since R is a domain, we can also form its field of fractions
K, which is the smallest field into which R embeds. Given a prime p € R, we
can then consider the following subring of K

R, :={a € K : ar € R for some r € R, not divisible by p}.



It is the largest subring of K containing R for which p is not invertible, and is
therefore a DVR with maximal ideal generated by p and quotient field R,,/pR, =
R/pR.

We also have the notion of a non-commutative DVR, which is a domain R
containing a non-zero element ¢ such that Rt = tR and every right ideal is of
the form t™R. Note that we then obtain a ring automorphism r +— 7 of R such
that tr = 7t.



2 Modules

Let R be a ring. A (right) R-module is an additive group M together with a
map M x R — M, (m,r) — mr, which is associative (mr)s = m(rs), bilinear
m(r + 1) = mr +mr’ and (m +m')r = mr + m/r, and unital m1l = m. It
follows from these that also m0 = 0 and m(—1) = —m.

Example 2.1. Modules over a field k are the same as k-vector spaces. Modules
over the integers Z are the same as abelian groups.

A module homomorphism f: M — N is a map of abelian groups which is
compatible with the R-actions, so f(mr) = f(m)r. Composition of homomor-
phisms is again a homomorphism, composition is associative, and the identity
on M is a homomorphism (so we have a category of R-modules). We say that
f is an isomorphism if there exists a homomorphism ¢g: N — M with gf = idy,
and fg =idy.

We write Homp (M, N) for the set of all R-module homomorphisms f: M —
N. Note that Homg(M, N) is again an additive group, via (f + f')(m) :=
fim) + f'(m). Moreover, composition is bilinear (f + f')g = fg + f'g and
flg+4¢)=fg+ fg (so we have a preadditive category of R-modules.)

As a special case, an R-homomorphism from M to itself is called an R-
endomorphism, and we write Endg(M). This has the structure of a ring, via

(fg)(m) := f(g(m)),

with unit the identity map. An isomorphism from M to itself is called an
automorphism; these form the units in Endg(M).

Finally, we observe that Homg(M, N) is a right Endg(M)-module, and also
a left Endr(V)-module. Moreover, associativity of composition gives v(fu) =
(vf)p for all p € Endr(M), v € Endg(N) and f € Hompr(M,N). Thus
Hompg(M, N) is an Endr(N)-Endg(M)-bimodule.

2.1 Submodules and quotient modules

Let M be an R-module. A submodule U < M is an additive subgroup, closed
under the action of R, so ur € U for all u € U and r € R. Thus U is itself an
R-module, and the inclusion map U ~— M is a module homomorphism.

Given a submodule U < M, the additive quotient M /U is naturally an R-
module, via the action m r := ™7, and the natural map M — M /U is a module
homomorphism.

Let f: M — N be a module homomorphism. Then its kernel Ker(f) :=
{m € M : f(m) = 0} is a submodule of M, its image Im(f) := {f(m): m e M}
is a submodule of N, and there is a natural isomorphism M/ Ker(f) = Im(f).
We set Coker(f) := N/Im(f), called the cokernel of f.

Example 2.2. The ring R is naturally a right (and left) module over itself,
called the regular module. The submodules are precisely the right (or left) ideals.

Let f: M — N be a module homomorphism. We say that f is a monomor-
phism if it is injective, equivalently Ker(f) = 0. We say that f is an epimorphism
if it is surjective, equivalently Coker(f) = 0. Finally, f is an isomorphism if and
only if it is bijective.



2.2 k-algebras

Let k& be a commutative ring, and M and N two k-modules. Then the abelian
group Homy, (M, N) is naturally a k-module, via (fa)(m) := f(m)a for f: M —
N, a € k and m € M. Similarly, Endy (M) is naturally a k-algebra. Note that
the k-action on Homy (M, N) is induced by either the action of Endy (M) or the
action of Endg(N).

Example 2.3. Let k be a field. Then a k-module is a vector space, and the
set of linear maps Homy (K™, k™) is also a vector space, isomorphic to matrices
M, s (k). In particular, Endg (M) is isomorphic to the matriz algebra M,, (k).

A k-algebra is a ring together with a ring homomorphism & — Z(R) from
k to the centre of R. In this case every R-module has the induced structure
of a k-module, and every R-module homomorphism is necessarily a k-module
homomorphism. Thus Hompg(M, N) is a k-submodule of Homy (M, N), and
similarly Endg (M) is a k-subalgebra of Endy(M).

Example 2.4. Let k be a field and consider the polynomial ring R = k[t].
Then giving an R-module is equivalent to giving a vector space M together with
a linear endomorphism T € Endy (M) describing the action of t, so mt := T'(m).

From now on we will usually work in this relative setting, so R will always
be a k-algebra.

2.3 Simple modules

A non-zero module M is called simple provided it has no submodules other than
0 or M.

Lemma 2.5 (Schur’s Lemma). Let S be simple. Then every non-zero f: S —
M is injective, and every non-zero g: N — S is surjective. In particular, every
non-zero endomorphism of S is an automorphism, so Endgr(M) is a division
Ting.

Proof. Given f: S — M we have Ker(f) < S, so either Ker(f) = 0 and f is
injective, or else Ker(f) = S and f is zero. Similarly for g: N — S, using
Im(g) < N. O

A composition series of a module M is a chain of submodules
0=M,<--- <My <My=M

such that each successive subquotient M; /M, is simple. The series has length
n if there are n such simple subquotients.

Theorem 2.6 (Jordan-Holder Theorem). If M has a composition series of
length n, then any other composition series also has length n, so we may write
M) =n.

Moreover, the isomorphism classes of the simple subquotients which occur,
together with their multiplicities, are independent of the choice of composition
series.



Proof. Let M’ < M be a maximal submodule, so S := M/M’ is simple. Let M,
be any composition series of M, say of length n. Then the map f;: M; - M —
M/M’ is either zero or surjective. Since M, = 0, the map f, = 0, whereas
My = M, so fy is surjective. Let j be maximal such that f; is surjective. We
set N; := Ker(f;), so N; = M; for i > j. We claim that there is a composition
series

0=N,<Np1 <+ <Nz =N; < <Ny <Nog=M'

and moreover that N;/N; 1 = M;/M;44 for i < j.

To see this, take ¢ < j. By construction the map f;y; is onto and fac-
tors through f;, so M;y1 — M; — M;/N; =2 S. We thus have the induced
isomorphism M;1/N;+1 — M;/N;, and hence

M;y1 NNy =N;1 and M1+ N; = M,.

It follows that the composition N; — M; — M, /M, is also onto, so yields an
isomorphism N;/N; 1 — M;/M;, 1.

We have therefore constructed a composition series M! for M’ of length n—1,
and the simple subquotients for M are those for M, except M;/M;11 = M/M’'.
The result for M now follows by induction from the result for M. O

Example 2.7. Let k be a field. Then the only simple module is k itself, and
the length of a vector space is just its dimension. If R is a k-algebra, then
necessarily every R-module which is finite dimensional over k is of finite length.

Example 2.8. Let R be a principal ideal domain, for example the ring of inte-
gers Z or the polynomial ring k[t] over a field k. Then the simple R-modules are
all of the form R/pR, where p € R is a prime. More generally, the R-module
R/p™R has length n with all composition factors isomorphic to R/pR. On the
other hand, R itself has no simple submodules.

2.4 Direct sums and products

Given a family of R-modules M; indexed by a set I, we can form their di-
rect product [[, M; by taking as elements all tuples (m;) with m; € M;, and
pointwise module operations, so

(mi)r + (ng) == (myr + ny).

We can also form their direct sum [ [, M;, or @, M;, as the submodule of [], M;
consisting of those elements (m;) of finite support, so m; = 0 for all but finitely
many ¢ € I. If I is a finite set, then clearly [[, M; = [, M;.

There are natural homomorphisms 7;: [[, M; = M; and ¢;: M; — [[, M;
such that m;¢; = idpy, and mje; = 0 for ¢ # j.

If M; = M for all i € I, then we also write M) for the direct sum, and M7
for the direct product.

Lemma 2.9. Let L, M and N be R-modules. Then M = L & N if and only if
there exist homomorphisms

L2 MPS L and N2 M2 N

such that
idp =prip, idy =pnin, idy =irpr +inpn.



Proof. Note first that the direct sum L & N comes equipped with the canonical
maps Ly, 7L, LN, TN, and these obviously satisfy the three conditions.

Suppose first that f: M =+ L @ N is an isomorphism. Then we can take as
the four maps f~tup,mrf, f N, TN S

Conversely, suppose we have the four maps. Note that ppiny = 0 and pyip =
0. For example,

prin = pr(iLpr +iNPN)iN = PLiN + PLiN = 2PLiIN,
so priy = 0. We can now define f: M - L@® N and g: L& N — M via
f=1rpr +inpy and g:=ipmp +iNTN,
and check that gf =idy and fg = idrgn. O

As a special case we see that if L, N < M are submodules, then M = L& N
whenever LN N =0 and L+ N = M. For, we take iy, to be the inclusion map,
whereas to define p;, we observe that the composition L — M — M/N is an
isomorphism, so we set pr, to be the induced map M — M/N = L. Similarly
for iy and py.

2.5 Indecomposables and Fitting’s Lemma

A module M is indecomposable if for any decomposition M = L & N we must
have L=0o0or N = 0.

Lemma 2.10 (Fitting’s Lemma). Suppose Endr(M) is a local ring. Then M
is indecomposable. The converse holds whenever M has finite length, in which
case every non-invertible endomorphism is nilpotent.

Proof. Given M = L @ N we have the corresponding element e; := ippr €
Endg(M). Then e2 = ey, so ey, is an idempotent. Now, if Endg(M) is a local
ring, then it has no idempotent elements other than id,; and 0, so either e;, = 0
and L =0, or e, = idy; and N = 0. Thus M is indecomposable.

Conversely, suppose that M has finite length and let f € Endgr(M). Then
we have a chains of submodules

M >TIm(f) >Im(f?) >--- and 0<Ker(f) < Ker(f?) <---

and since M has finite length, both of these must stabilise. Thus there exists n
such that both Im(f™) = Im(f"*!) and Ker(f") = Ker(f"*!).

It follows that M 2= Im(f™) @ Ker(f™). For, take x € Im(f™) N Ker(f™).
Then z = f(y), and 0 = f"(x) = f2"(y). Thus y € Ker(f?") = Ker(f"), so
x = f*(y) = 0. Similarly, given m € M, we have f"(m) = f2"(m’), and so
m =z +y where z = f*(m’') € Im(f") and y = m — z € Ker(f™).

In particular, if M is indecomposable of finite length, then every endomor-
phism f is either nilpotent (Im(f™) = 0, so f® = 0) or an automorphism
(Im(f™) = M and Ker(f™) =0).

Finally, we show that the nilpotent endomorphisms form a two-sided ideal,
so Endgr (M) is local.

To see this note first that a product fg is invertible if and only if both f and
g are invertible. For, if fg is invertible, then f is surjective and g is injective,



so neither is nilpotent, so both are invertible; the converse is clear. Next, if f is
nilpotent, then 1 + f is invertible, with inverse 1 — f + f2 — 3 +--.. Finally,
suppose f is nilpotent and ¢ := f+g is invertible. Then g = ¢—f = ¢(1—¢ 1 f)
is invertible. O



3 Modules for Principal Ideal Domains

Let R be a (commutative) principal ideal domain, so every ideal is of the form
xR for some x € R. Examples include Z and k[t] for a field k.

We write x|y provided yR C zR. Also, given any z,y € R we have their
greatest common divisor d and lowest common multiple m, defined via

tR+yR=dR and zRNyR=mR.
Note also that R is Noetherian; that is, every ascending chain of ideals
LclbcC---

necessarily stabilises. For, the union I := (J; I; is again an ideal, so of the form
R, and if x € Iy, then I,, = Iy = I for all n > N.

A vector (rq,...,r,) € R™ is called unimodular provided the r; generate
the unit ideal, so ) . ;R = R. We write GL,, (R) for the invertible matrices in
M, (R), so those whose determinant is a unit in R. We begin with a nice lemma
about extending unimodular vectors to invertible matrices.

Lemma 3.1. Every unimodular vector appears as the first row of an invertible
matriz.

Proof. We prove this by induction on n. The case n = 1 being trivial, since 7
is necessarily a unit.

Consider a unimodular vector (a,r1,...,7,). Let d be the greatest common
divisor of the r;, and write r; = ds;. Then (s1,...,8,) is unimodular, so by
induction there is a matrix M € GL,(R) having first row (s1,...,8,). Next,
a and d generate the unit ideal, so we can write ax + dy = 1. We now con-
sider the matrix M € M, (R) having as first row (a,71,...,7,), as i-th row
(0,41, ...,myy) for 1 < i < n, and as last row (y,s1z,...,s,z). Finally we
compute the determinant of M by expanding along the first column. We get

det M = (—1)""Y(azx + dy) det M = (—1)" " det M,
so det M is a unit and M € GL,,;(R). O

Example 3.2. Consider the unimodular vector (6,10,15) € Z3. We have
gcd(10,15) = 5, yielding the unimodular vector (2,3) which we can complete

? ;) Now6—-5=1,s0x=1andy=—1, so

the proof of the lemma gives the invertible matriz

to an invertible matric M = (

) 6 10 15
M=[0 1 2
-1 2 3

We can now give the Smith Normal Form for matrices over principal ideal
domains.

Theorem 3.3 (Smith Normal Form). Let A € M, «xn(R) be any matriz. Then
A is equivalent to a matrixz in block form

(g 8> 5 D:diag(dl,...,dr), dl‘d2||dr



Recall that equivalence of matrices is generated by row and column opera-
tions, which is the same as acting on left by matrices in GL,,(R) and on the
right by matrices in GL,(R).

Proof. We start by noting the following consequences of the lemma.

(1) Let A be any matrix, say with first row (rq,...,7,). Let I = aR be the
ideal generated by the 7;, so r; = as; and (s1,...,$,) is unimodular. By the
lemma there exists a matrix M € GL,(R) with first row (s1,...,5sy), and so
AM ™" has first row (a,0,...,0).

(2) Similarly if J = bR is the ideal generated by the entries in the first
column of A, then there exists N € GL,,(R) such that N~'A has first column
(b,0,...,0)%.

Now, starting from our matrix A, we repeatedly apply these constructions.
This yields an ascending chain of ideals

LcJiclhycJyC---

which must then stabilise since R is Noetherian. It follows that A is equivalent
to a matrix of the form
€1 0
(5 %)

By induction we know that A’ is equivalent to a matrix having the required
form, and so we have reduced to the case when our matrix is of the form

/
(13 8) D' =diag(er, d,, ..., d), dild|---|d..

0

€1 dh
0 d,

Now consider the matrix ( ) This is equivalent to (%1 d’1>’ SO we
1

. . . . (d
can apply our reduction process to obtain an equivalent matrix 01 60 > , Where
2

dy = ged(eq,d}), and then necessarily es = lem(eq, d}) (compare determinants).
€9 0
0 d
nally yielding a matrix D = diag(dy,...,d.1+1), equivalent to D’ and satisfying
di|da] - |dry. O

We now continue in this way, using the matrix and so on, fi-

Theorem 3.4 (Structure Theorem for Finitely Generated Modules). Let M
be an indecomposable, finitely generated R-module. Then M is isomorphic to
either R itself, or to some R/p™R where p € R is prime and m > 0.

Moreover, every finitely generated module is isomorphic to a direct sum of
indecomposable modules in an essentially unique way. In other words, given

Mi@®--- &M, ZN ®---P N

with M; and Nj finitely generated and indecomposable, then r = s and, after
reordering, M; = Nj.

Proof. Since R is Noetherian, any finitely generated module is the cokernel of
some map R™ — R"™. Next any such map can be put into Smith Normal
Form, and so the cokernel is isomorphic to some R*® (R/d1R)®---&® (R/d,R).
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Now, writing d = pi™ --- pI™ as a product of primes, we can use the Chinese

Remainder Theorem to get
R/dR= (R/p{"R) & - & (R/p]" R).

Thus every finitely generated module is isomorphic to a direct sum of modules
of the form R or R/p™R with p € R prime and m > 1.

We need to show that each of these summands is indecomposable. For R
itself, this follows from the fact that it is a domain. For, if R = M & N, then M
and N are ideals in R, say mR and nR, respectively. Now mn € M NN = 0,
so either m =0 or n = 0.

For R/p™ R we have that Endgr(R/p™R) = R/p™R. This is a local ring, with
unique maximal ideal pR/p™R, so the module is indecomposable by Fitting’s
Lemma.

Finally, we need to show uniqueness. Suppose we have a finitely generated
module

M= R"o @(R/p™R).
P,
Let K be the field of fractions of R. Then RQr K = K whereas (R/p"R)QrK =
0. Thus n = dimg (M @ K).

Now let p € R be a fixed prime, so that K(p) := R/pR is a field. Consider
the R-submodule Mp® of M, and the corresponding K (p)-vector space Mp® @p
K (p). We note that

Rp® @r K(p) = K(p) and (R/q™R)p® @r K(p) =0 for ¢R # pR.

Also, (R/p™R)p* ®r K (p) equals K(p) if m > s, and is zero if m < s. Thus we
can compute the sizes of the sets {i : m,; > s} for all s, and hence compute the
numbers m,, ; themselves, just by computing the dimensions of the K (p)-vector
spaces Mp®* ®r K(p). O

Example 3.5. Let R = Z. Then this result shows that the indecomposable
finite abelian groups are the cyclic groups of prime power order Z/(p"), and
every finite abelian group is isomorphic to a finite direct sum of indecomposable
ones, in an essentially unique way.

Example 3.6. Let R = k[t] where k is an algebraically-closed field. The
primes in k[t] are the polynomials t — X\ for A\ € k. Thus, choosing the basis
{1,t,¢2,...,t" 1} for k[t]/((t — \)™), we see that this indecomposable module
has underlying vector space k™, and that t acts via the Jordan block matriz
Jn(N) of size n and eigenvalue \.

Thus, if we identify k[t]-modules with pairs (V,T) consisting of a vector space
V together with a linear endomorphism T € Endg(V'), then this result shows that
every square matriz is conjugate to a matriz in Jordan Normal Form.

Example 3.7. More generally, let R = k[t] for an arbitrary field k. Then the
primes correspond to monic irreducible polynomials, and choosing an appropri-
ate basis we can write every matriz in rational canonical form.

In summary, the finite length indecomposable modules come in families in-
dexed by primes, and each family has a unique indecomposable of length n for
each n > 1. This lies at the heart of understanding what happens for any finite
dimensional hereditary (non-commutative) algebra.
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4 Short exact sequences

A sequence L Iy M % N is said to be exact if Im(f) = Ker(g) as submodules
of M. A diagram
f

0 L M2 N 0

is called a short exact sequence provided it is exact at L, M and N. This is
equivalent to saying f is a monomorphism, g is an epimorphism, and Im(f) =
Ker(g).

Two short exact sequences fitting into a commutative diagram of the form

0 L2 w2 N 0
T
0 L M N 0

are said to be equivalent. Note that in an equivalence of short exact sequences,
the homomorphism g is necessarily an isomorphism. (This is either an easy
diagram chase, or a consequence of the more general Snake Lemma below.)

A split short exact sequence is one equivalent to the trivial sequence

00— L -2 LpN -3 N—50.

Lemma 4.1. The following are equivalent for a short exact sequence

0 A Y N 0.
1. There exists a retract r: M — L, so rf =idy.
2. There exists a section s: N — M, so gs =idy.

3. The sequence is split.

Proof. Given a retract r, we have M = Ker(r) @ Im(f). Setting p = vpr +
nng: M — L @& N we see that the sequence is split. Similarly if we have
a section s. Conversely, if the sequence is split, then we have an isomorphism
w: M = L@ N, so we have the retract r := 7 and the section s := u~toy. O

4.1 Snake Lemma

Lemma 4.2 (Snake Lemma). Consider a commutative diagram with exact rows

L sm_—92 N 0
| E N
0 A Y 7 SN\

Then we obtain an exact sequence

Ker(\) ER Ker(u) & Ker(v) LN Coker(\) TN Coker(p) LN Coker(v).

The connecting homomorphism § satisfies 6(n) = ' + Im(\) whenever there
exists m € M such that both n = g(m) and f'(I') = pu(m).

Moreover, if [ is injective, then so too is Ker(\) — Ker(u), and similarly if
g’ is surjective, then so too is Coker(u) — Coker(v).
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Proof. Some diagram chasing.

It is clear that f restricts to a map Ker(\) — Ker(u). For, if I € Ker()\),
then pf(l) = f/A(1) = 0, so f(I) € Ker(u). Moreover, this restriction is an
R-module homomorphism, and it is injective whenever f is injective. Similarly
g restricts to an R-module homomorphism Ker(u) — Ker(v), and gf = 0. To
check exactness at Ker(u), suppose m € Ker(p) NKer(g). Then m = f(I), and
A1) = pf(l) = ulim) =0, so f injective implies A(I) = 0, so I € Ker(A).

We next show that 6 is well-defined. Given n € Ker(v), suppose we have
two pairs (If,m1) and (15, m2) satisfying the conditions. We set I’ := I} — 1},
and m := my — mg. Then g(m) = 0, so m = f(I) for some [ € L, and also
F1() = p(m) = uf(l) = f/(A(1)). Since f is injective we get I’ = A(I) € Im(N),
and hence that If 4+ Im(\) =I5 + Im()). Similarly reasoning shows that § is an
R-module homomorphism.

For the exactness at Ker(v), suppose first that n = g(m) for some m €
Ker(v). Then we can take I’ = 0, and so d(n) = 0. Conversely, suppose
d(n) = 0, and take some pair (I’,;m). Then I’ = A(l) € Im()\), so p(m) =
/(") = f'A() = pf(l). Thus we could also have taken the pair (0,m — f(I)).
In particular, m — f(I) € Ker(u) and n = g(m — f(I)).

The remaining parts are all dual. O

4.2 Kernels and Cokernels revisited

Let f: L — M be a map of R-modules. The definition of the kernel of f as
being a certain subset of L is in practice too rigid; we need a definition that
allows invariance up to isomorphism.

A kernel for f consists of a map i: K — L such that fi = 0, and with the
property that given any map «: X — L such that fa = 0, there exists a unique
map a: X — K with ia = «.

X
Aa L"N
I ¥
K——L—M

Lemma 4.3. Leti: K — L and f: L — M be maps of R-modules. Then the
following are equivalent.

1. The map i is a kernel for f.

2. The sequence 0 — K 5L M s exact.
3. For all R-modules X the sequence

0 —— Homp(X,K) —=— Hompa(X,L) —— Hompg(X, M).

is exact (as right Endg(X)-modules).

Proof. Note that f.(«a) = fa, and similarly for i,.

1 = 3. We have fi = 0, so fi«i, = 0. The sequence in 3 is then exact
provided for all a: X — L, there exists a unique &@: X — K such that o = i@,
which is precisely the universal property in the definition for a kernel.

13



2 = 1. Take a: X — L with fa = 0. Then Im(«) < Ker(f) = Im(4), and
since 4 is injective there exists a unique (set-theoretic) map a: X — K with
« = i@. It is now easy to check that & is an R-module homomorphism.

3 = 2. Taking X = K, we have fi = f.i,.(idg) = 0. Taking X = Ker(4),
then we have the inclusion 8: X — I and i.(8) = 0. By uniqueness 8 = 0, and
hence Ker(i) = 0. Finally, take X = Ker(f) and a: X — L the inclusion. Since
f«(a) = 0 we know that o = i@ for some &: X — K. Thus Ker(f) = Im(a) C
Tm(4). O

Dually, a cokernel for f consists of a map p: M — C such that pf = 0, and
with the property that given any map 5: M — X such that 5f = 0, there exists
a unique map 3: C — X with Bp = S.

L—>M*>C

Nl

Lemma 4.4. Let f: L - M and p: M — C be maps of R-modules. Then the
following are equivalent.

1. The map p is a cokernel for f.

2. The sequence L ENG VN C — 0 is ezact.

3. For all R-modules X the sequence

0 —— Homp(C, X) —2— Homp(M,X) —— Homp(L, X).

is exact (as left Endg(X)-modules).

Note that the third conditionsin the lemmas are referred to as saying that
Homp(X,—) and Hompg(—, X) are left exact functors (the latter being con-
travariant). Also, exactness in the second lemma at Hompg (M, X) is often called
the Factor Lemma.

It follows from these definitions that kernels, and similarly cokernels, are
unique up to unique isomorphism.

4.3 Push-outs

Given a pair of homomorphisms f: L —+ M and \: L — L’, their push-out
consists of a commutative square

L— M

bl

A Ve

with the property that given any pair of homomorphisms a: M — X and
B: L' — X such that au = B\, there exists a unique homomorphism ~: M’ —

14



X with a =~yu and 8 =~f'.

Equivalently we can say that for all X there is an exact sequence
0 — Hompg(M', X) — Homgr(M & L', X) — Hompg(L, X),

given by composing with (u, f'): L’ ® M — M and (j\f): LMoL, or
alternatively there is an exact sequence

)

LS pver W o

Thus a push-out is the same as a cokernel of the map (_/\f): L— M®L, so
they exist and are unique up to unique isomorphism.
In a push-out square, parallel maps have naturally isomorphic cokernels.

Lemma 4.5. Given a push-out square

L—1 s m

bl
JA Ay V]
we have natural isomorphisms Coker(f) = Coker(f’) and Coker(\) = Coker(u).

Proof. Consider the exact commutative diagram

Lt MmN 0
b y v
vt N 0

Since ¢'uf = ¢’ f'\ = 0, we see that there is a (unique) map v with vg = ¢’u. On
the other hand, since M’ is a push-out, we obtain a (unique) map v: M’ — N
such that yu = ¢ and v f’ = 0. From this latter condition we obtain a (unique)
map ' : N’ — N such that v = v/g.
We now check that v and ¢/ are mutually inverse. We have
Vivg=v'gdp=yn=g,
so since ¢ is an epimorphism, v'v = idy. Similarly, vv/g’: M’ — N’ satisfies
w'dp=vyn=vg=g¢p and w'gf =0=gf,

so by the uniqueness part of the push-out property, vv'¢’ = ¢’. Then ¢’ being
an epimorphism implies vv/ = idy-.
The proof that Coker(\) = Coker(u) is entirely analogous. O

15



The push-out along a composition is equivalent to the composition of the
push-outs.

Lemma 4.6. Given two push-out squares

L sm—92 N

L
R
the outer square is also a push-out

L% N

bk

RN N

Proof. We check that the latter square satisfies the uniqueness property on
maps.

Existence. Suppose we are given a: N — X and 8: L’ — X such that
agf = BA. Then since M’ is a push-out we have a unique map v: M’ — X
with vf’ = 8 and yu = ag, and then since N’ is a push-out we have a unique
map 6: N’ — X such that v = a and ¢’ =y, and hence also ¢’ f' = 3.

Uniqueness. Here it is enough to show that v = 0 and d¢’f’ = 0 implies

= 0. We have dg'u = dvg = 0, so dg’ = 0 since M’ is a push-out, and then
0 = 0 since N’ is a push-out. O

Finally, push-outs of monomorphisms are again monomorphisms.

Lemma 4.7. Suppose we have a short exact sequence 0 — L i> MZL N0
and a map \: L — L'. Then we have an exact commutative diagram

f

0 L M2 N 0
bl
0 L M’ N 0

if and only if the left hand square is a push-out.

Proof. Let E be the push-out. Since the cokernel of L’ — E is isomorphic to
the cokernel of f, namely N, there is an exact commutative diagram of the form

0 L M N 0
[ T
-2 N 0.

We need to show that f’ is injective, so consider the exact sequence
L>MaL —F—D0.
If 2 € L' is sent to zero, then (°) € M @ L' lies in Ker(u, f/) = Im (7/), so

(2) = (;\’Eg)) for some [ € L. Since f is injective, we must have [ = 0, whence

x=A(1)=0.
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Now suppose we have such an exact commutative diagram with M’. Since
E is a push-out we obtain a map F — M’ fitting into an exact commutative
diagram

0 L M N 0
]

0 r E N 0
[

0 r M N 0.

Applying the Snake Lemma to the bottom two rows we deduce that the map
E — M’ is an isomorphism. O

4.4 Pull-backs

We also have the dual notion. The pull-back of a pair of maps v: N — N’
and g': M’ — N’ is given by a commutative square satisfying the appropriate
condition for maps from some module X

X [e%
o

M—2 N

bl

M —2— N’

Equivalently, for all X there is an exact sequence

0 — Hompg (X, M) — Homg(X, N & M') — Hompg(X, N'),
given by composing with (Z): M — Ne& M and (v,—g'): N& M — N’ or
alternatively there is an exact sequence

()

0—— M L N M Y29 N,

Thus a pull-back is the same as a kernel of the map (v, —¢'): N® M’ — N, so
they exist and are unique up to unique isomorphism.
In a pull-back square, parallel maps have naturally isomorphic kernels.

Lemma 4.8. Given a pull-back square

M—2 5 N

N

M —Z— N’
we have natural isomorphisms Ker(g) = Ker(g') and Ker(u) = Ker(v).

The pull-back along a composition is equivalent to the composition of the
pull-backs.
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Lemma 4.9. Given two pull-back squares

L w9, N

bl )

) M 9 N’

the outer square is also a pull-back

L% N

bk

L g f N’
Finally, pull-backs of epimorphisms are again epimorphisms.

Lemma 4.10. Suppose we have a short evact sequence 0 — L’ f—> M 2
N’ — 0 and a map v: N — N'. Then we have an exact commutative diagram

0 2, N 0
0 L M N 0

if and only if the right hand square is a pull-back.

4.5 The Krull-Remak-Schmidt Theorem

We begin with a nice lemma concerning pairs of short exact sequences with the
same middle term.

Lemma 4.11. Suppose we are given two short exact sequences with the same
middle term

0 XS5ME5X 50 and 0Y SMLSY S0

Then these fit into an exact commutative diagram

Er—" s X Im(da)

ool
|

Yy — s M —2L 5y

Im(be) X' F

where E is the pull-back and F is the push-out.
Note. If X, Y < M are submodules, then E =X NY and F = M/(X +Y).

Proof. Let E be the pull-back of ¢ and ¢, and write i: £ — X and j: £ — Y
for the induced maps. We claim that i: £ — X is a kernel for da.

18



Clearly dai = dcj = 0, so we need to show that, given a: W — X with
daca = 0, there exists a unique v: W — FE with a = ¢y. The uniqueness follows
since ¢ is injective, by Lemma 4.8, so we just need to show existence.

Suppose a: W — X satisfies daa = 0. Since c is a kernel for d we can write
aa = ¢f. Then, using that F is a pull-back, we obtain v: W — E with iy = a«a
(and also jy = ¢f3).

Similarly j is a kernel for be. Dually the push-out F' yields cokernels for both
da and be. O

Corollary 4.12. Suppose we have two short exact sequences

0 XSME5X 50 and 0Y SMLY 0.

Then da is an isomorphism if and only if bc is an isomorphism.

Proof. We have da is an isomorphism if and only if £ =0 = F, which is if and
only if ¢b is an isomorphism. O

We can use this to prove the Krull-Remak-Schmidt Theorem.

Theorem 4.13 (Krull-Remak-Schmidt). FEwvery finite length R-module can be
written as a direct sum of indecomposable modules in an essentially unique way.

Proof. Arguing by induction on length we see that we can always decompose a
finite length module into a direct sum of indecomposable modules. We therefore
just need to prove uniqueness.

Write M =2 X7 & --- @ X, with each X; indecomposable. Associated to this
decomposition we have the maps X; = M = X,. Now suppose we also have
M =>=Y @Y’ with Y indecomposable, and associated maps Y i> M %Y, and
similarly f’, ¢’ for Y. Then

idy =gf =g(um +-- +um)f = Zgbﬂmﬁ

By Fitting’s Lemma Endg(Y) is local, so without loss of generality we may as-
sume gi,m.f is an automorphism. We observe that . fgi, € Endg(X,) cannot
be nilpotent, so must be an automorphism by Fitting’s Lemma again. Thus 7, f
is an automorphism, so we can apply the lemma to the short exact sequences

0> Ker(m,) > M ™ X, 50 and 0-Y LMLy 50

to obtain Y’ = Ker(m,) 2 X; & --- @ X,._;. Now use induction on r. O

19



5 Extension groups

We write Extg(M, X) for the set of all equivalence classes of short exact se-
quences of the form

e 0XLES Moo
Note that in a general abelian category, this may not actually be a set, but we
will see shortly that this is the case in any module category.

Example 5.1. Let R = k[t|]. Then the module M is given by a pair (M, p)
consisting of a vector space M together with an endomorphism p. Similarly a
homomorphism f: (M,p) — (X,§) is given by a linear map f: M — X such
that fu==¢f.

Now consider a short exact sequence
0= (X, L (B,7) L (M, ) — 0.

Forgetting the action of t, this sequence must be split, so we have a vector space

isomorphism o« = (;): E = X @ M, where v is any retract for f. Setting
o= ara~t, we have the equivalence of short exact sequences of k[t]-modules
0 — (X,6) —— (B,7) —— (M) —— 0

0— (X,6) - (x e}M, o) " (M, ) —— 0.

Writing o as a matriz we obtain o = (g Z) for some linear map 6: M — X.
We therefore write the class of this extension as [0].

We now determine when (0] = [6']. Write o’ = (§ Z/ ), and consider an ezact
commutative diagram

(o)

0 (X,8) (X @ M, o) 25 (M, 1) —— 0
| e |
0 (X, €) (©) (X @ M,o") -2 (M, 1) — 0.

Then 8 = ((1) {) for some linear map f: M — X such that fo = o'f3, equiva-
lently 0+ fu=&f + 0, or equivalently ' =0 + (fu — Ef).

We conclude that there is a four term exact sequence
0 — Homyp (M, X) — Homg (M, X) LN Homy (M, X) = Ext,lcm(M,X) — 0,
where §(f) := pf — f€ and w(0) = [6].

5.1 The Baer sum
The push-out along p: X — Y yields a map
Extp(M,X) — Extp(M,Y), & pe.
Similarly the pull-back along f: L — M yields a map
Exth(M,X) — Exth(L,X), &~ cf.

The next lemma shows that these two operations are compatible.
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Lemma 5.2. We have p(ef) = (pe)f for oll f: L — M, p: X — Y and
e € Exth(M, X).

Proof. We consider the commutative diagram with exact rows

ef: 0 X "5 F 5[ 0
| b

e: 0 X —“*sE-—s M 0
Pl

pe: 0 y ‘5@ 25 M 0.

Now take the pull-back along f of the bottom row, yielding a diagram with
exact rows, and where the bottom half commutes

ef: 0 X3 F 5[ 0
P

(pe)f: O AN N 0
Y

pe: 0 Yy ‘G 2= M 0.

Using that E’ is a pull-back, the map ¢': F' — E’ is unique such that /¢’ =
and ¢'q’ = qg, showing that the top right square commutes. We now compare
the two maps ¢'r, a’p: X — E’. We have

gdr=qgr=tp=g¢'dp: X -G and b¢r=sr=0="bap: X - L.

Since also utp = 0, we can again use the uniqueness property for pull-backs to
deduce that ¢'r = a’p, so the top left square commutes. It follows from Lemma
4.7 that the top left square is a push-out, so the extension class of the middle
row also equals p(ef). O

We can now define an addition on Ext}g(M ,X), called the Baer sum. Given
two short exact sequences

0 XSEL M50 and 05 x5 E YoM o,

it is easy to check that their direct sum is again a short exact sequence

(50) (5)

EaF

ede’s 0 X2 M? 0.

We can then take the pull-back and push-out along the diagonal maps G) M —
M? and (1 1): X2 — X to obtain another element in Extk (M, X), denoted
e+e.

Proposition 5.3. The Baer sum endows Exty(M, X) with the structure of an
abelian group, with zero element the class of the split exact sequence.
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Proof. That the Baer sum is commutative is clear, since the direct sums ¢ @ ¢’
and &’ @ € are equivalent.

For the associativity we note that to compute €+ (¢/ +¢”), we can start from
the direct sum e @ &’ @ €”, take the push-out and pull-back along the maps

1 00 10
: X3 5 X% and 0 1]:M?>—= M3
01 1 0 1

to obtain e @ (¢'+¢”), and then take the push-out and pull-back along the maps
(11):X* X and (j):M— M2

Using that pull-backs and push-outs commute, and that the composition of
push-outs is the same as the push-out of the composition, Lemma 4.6, and
similarly for pull-backs, we see that this construction is the same as directly
taking the push-out and pull-back along the maps

(111): X* 5 X and (?}):M%M?

By symmetry this latter construction also computes (¢ +¢’) +&”.
We check that the zero element is given by the class of the split exact se-
quence. This follows from the following commutative diagram with exact rows

e®0: 0 X2 (ﬁ) EoXoM (569) M? 0
G o

0 ¥? (a9) Fox 00 Ly 0

e+0=¢e: 0 X @ E b M 0

Finally, the following two short exact sequences are additive inverses

0 XSEL M0 and —e:05X =S ES M 0.

For, consider the following commutative diagram with exact rows

e®(—e): 0 X2 (5 %) E? (52) M? 0
oo o
0 X2 (1) Eaox 2, 0
[ ey
et(=e): 0 x ), w2y 0,y 0

Note that in both diagrans the middle rows are exact, since they are both

equivalent to the direct sum of € and the trivial short exact sequence 0 — X EN
X —=0—=0. O
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In fact, Extp (M, X) is naturally an Endg(X)-Endg(M)-bimodule via the
push-out and pull-back constructions, and if R is a k-algebra, then the two k-
module structures agree. We will not prove this directly, though, but deduce it
from another construction. (The reason we are doing this is to save ourselves
the trouble of discussing balanced functors.)

5.2 Projective modules

Given a k-algebra R, we can naturally regard R itself as a right R-module. This
is called the regular module. A free module is one which is isomorphic to a
direct sum of copies of the regular module, so R := @D, R for some set I.

Lemma 5.4. We have Homp(RY), M) = M!, sending f — (f(1;)), where
1, € RY has a1 in position i and zeros elsewhere.

Proof. We begin by observing that every element z € RU) is uniquely a finite
R-linear combination of the 1;. It follows that an R-module homomorphism
f: R — M is uniquely determined by the elements f(1;) € M, and that
these can be chosen arbitrarily. O

Lemma 5.5. The following are equivalent for an R-module P.
1. FEwvery short exact sequence 0 — L — M — P — 0 splits.

2. If0 > L —- M — N — 0 is exact, then so too is

0 — Hompg (P, L) — Hompg (P, M) — Homg(P,N) — 0.

3. P is a direct summand of a free module.
In this case we call P a projective R-module.

Note: Condition 2 can be rephrased as saying that Hompg(P, —) is exact.
Since Homp (P, —) is left exact, it is enough that we can lift maps from P along
epimorphisms.

Proof. 2 = 1. A lift of the identity map idp gives a section to the epimorphism
M — P, so the sequence is split.

1 = 3. Every module is the quotient of a free module, and by assumption
the epimorphism RY) — P is split.

3 = 2. We need to show Homp(P,M) — Homp(P,N). This is true for
free modules, since given g: M — N and h: RY) — N, say corresponding to
(n;) € NI, we just take any m; € M mapping to n; under g, and obtain the lift
h': RY) — M corresponding to (m;) € M'.

In general, write P ® Q = RY) and use the associated maps tp and 7p.
Given h: P — N we have hrp: RY) — N, which we can lift to h”: RY) — M.
Then h' := h"vp is a lift of h. For, gh’ = gh”1p = hwptp = h. O

Example 5.6. Let e € R be an idempotent. Then R = eR@® €'R, so eR is a
projective module. Moreover, Hompg(eR, M) = Me via f +— f(e).
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5.3 Injective modules

The first two conditions for projective modules have their obvious duals. The
third condition does not, but we can replace it by Baer’s Criterion providing a
simple test for injectivity.

Lemma 5.7. The following are equivalent for an R-module I.
1. FEwvery short exact sequence 0 — I — M — N — 0 splits.

2. If0 > L - M — N — 0 is exact, then so too is

0 — Hompg(N,I) = Hompg(M,I) — Homg(L,I) — 0.

3. (Baer’s Criterion) It is enough to take M = R in 2.
In this case we call I an injective R-module.

Note: Condition 2 can be rephrased as saying that Hompg(—,I) is exact.
Since Hompg(—, I) is left exact, it is enough that we can lift maps to I along
monomorphisms.

Proof. 2 = 3. Clear, since 3 is a special case of 2.
1 = 2. We need to show Hompg(M,I) - Homp(L,I). Take a map L — [
and consider the push-out

0 L M N 0
Lb
0 1 E N 0

The bottom row is split, yielding a retract r: E — I. It follows that the
composition M — E — [ is a lift on the map L — I.

3 = 1. Use Zorn’s Lemma. We consider the set of pairs (U,r) such that
I <U< M andr:U — Iis a retract of the inclusion. This is a poset, where
we take (U,r) < (U’,r") provided U < U’ and r'|yy = r. It is non-empty since it
contains (I,idy). All chains have upper bounds, since if we have a chain (U;, r;),
then we take U = |J, U; and define r(u) := r;(u) for any i such that v € U;. By
Zorn’s Lemma we have a maximal element (U, r).

Suppose U < M and take m € M—U. We haveamap f: R — M, f(1) =m.
Take the right ideal L < R consisting of those a € R such that ma € U. Thus
f restricts to a map L — U, so we have rf: L — I, which by assumption we
can lift to g: R — 1.

It follows that there is amap s: U+mR — I, u+ma — r(u)+g(a). To show
that s is well-defined consider u +ma = v +mb. Then v —u = m(a — b) € U,
soa—be L and gla—b) =rf(a—0b) =r(v—u). Thus s(u+ma) = s(v+ mb).
Therefore (U,r) < (U + mR, s), contradicting the maximality of (U,r). We
conclude that U = M, so I — M is a split monomorphism. O

Example 5.8. Let k be a field, R a k-algebra, and D := Homy(—, k) the usual
vector space duality. If P is a projective left R-module, then D(P) is an injective
right R-module.
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5.4 Extension groups via projective resolutions

Lemma 5.9. Let M and X be R-modules.

1. Lete: 0 U S P 5 M — 0 be exact, where P is projective. Then there
is an exact sequence of additive groups

0 — Homp (M, X) — Homp (P, X) — Homg (U, X) — Exth(M, X) — 0.
This sends a map p: U — X to the push-out pe € Ext}%(M,X),

2. Letn: 0 — X — I —V — 0 be exact, where I is injective. Then there is
an exact sequence of additive groups

0 — Homp(M, X) — Homp (M, I) — Hompz (M, V) — Extk (M, X) — 0.
This sends f: M — V to the pull-back nf € Exty(M, X).

Proof. We prove the first, the second being dual.
We begin by showing that the push-out yields a map of additive groups.
Given two maps p,q: U — X, we first form their respective push-outs

€: Ur—tsP "3 M €: Ur—tsP "% M
T ool
pe: X2 E—"ys M gg: X< F Yy M

Next, consider the following diagram, where the middle row is a push-out

U L r = M

X2 a9 s
|l
X2 W EaF % M?

Using the push-out property there is a unique map s: G — E @ F such that
sf = (a c) and sr = (5')7 and so the bottom left square commutes. We now

compare the two maps (})97 (8 2)3: G — M?. We have

0906 2o (e
09 9C) -0~ (-

l)m = 0, we can again use the uniqueness property for pull-backs to

1
deduce that ( 8 g)s = G)g, so the bottom right square commutes. It follows from

Lemma 4.10 that the middle row is also a pull-back. If we now take the push-out
of the middle row along the map (1 1): X2 — X, we obtain (p + q)e = pe + ¢e.

Since also (
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We next observe that the push-out of € along any composition pt with p: P —
X is the split exact sequence

U : P

b e

X%HX@MOD

In particular, the push-out along the zero map is split, and so the push-out map
is additive. To see that it is surjective, take any short exact sequence

0 XSES Mo

We can lift the map 7: P — M along the epimorphism F — M, and then
using that a is a kernel we obtain a (unique) map U — X making the following
diagram commute

0 U P M 0
LD
0 X E M 0.

This is now a push-out diagram by Lemma 4.7.

Finally, the four term sequence is exact at Hompg (U, X). For, we have already
shown that the image of Homp(P, X) lies in the kernel. Conversely, given a
push-out diagram

U——P
ool

X —— E
if the bottom row is split, then we have a retract r: £ — X for a, and hence
p = rap = rqu factors through ¢. O

Corollary 5.10. The additive group Ext}{(M,X) is naturally an Endg(X)-
Endg(M)-bimodule. Moreover, if R is a k-algebra, then the two induced actions
of k on Exth(M, X) agree.

Proof. Consider the four term exact sequence
0 — Homp (M, X) — Homg (P, X) — Homg (U, X) — Extk(M, X) — 0,

wheree: 0 - U — P — M — 0 is exact with P projective. Since the first three
terms are naturally left Endg(X)-modules, we obtain an induced Endg(X)-
module structure on Ext};z(M ,X). In fact, this is just given by the usual push-
out map. For, given any extension class, we can write it as a push-out pe for
some p: U — X. Then f € Endg(X) acts on Exth(M,X) by f - pe := (fp)e,
which equals the composition of push-outs f(pe).

Similarly the right action of Endr(M) is given by the pull-back map, and
since pull-backs and push-outs commute, we see that Endr (M, X) is naturally
a bimodule.
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Finally, suppose that R is a k-algebra. To see that the two actions of k
agree, take A € k and write Ax for its image in Endg(X). Similarly for Ag and
Anr. We then have the exact commutative diagram

0 X 2y gty Mm 0
l/\x A\E J//\JVI
0 X s p -ty Mm 0

As in the exercises, we have Axe = e\, proving the claim.
Explicitly, consider the following commutative diagram, where the middle
row is a pull-back

0 X <25 p-—bysm 0
b b

0 X 5 F M 0
R

0 X <25 p-—bym 0

Since the two actions of k on Homp(E, M) agree, we know that Ayb = bAg.
Then, since F is a pull-back, we have a unique map f: ' — F such that df = b
and gf = Ag. We then check

dfa =ba=0=dcAx and gfa= Agpa=alx = gcix,

so by uniqueness we have fa = c\x. Therefore the top half of the diagram
commutes, so the middle row is also a push-out by Lemma 4.7. O

5.5 Long exact sequence for ext

Lemma 5.11. Lete: 0 — L ENG VEENG VN 0 be exact. Then for all X there is
a long exact sequence (of left Endg(X)-modules)

0 — Homp(N, X) —L— Homp(M, X) —— Homp(L, X) j

e*

L» ExtlL (N, X) —L 5 ExtL(M,X) — s Exth(L, X)
Here the map €* sends A\: L — X to the push-out \e, and g* acts on extensions
as the pull-back map &' — €'g.

Proof. This follows from the Snake Lemma. More precisely, take epimorphisms
pr: P — L and py: Py — N with Py and Py projective. Since Py is
projective we can lift the map Py — N to a map ¢: Py — M. Now set
Py := P, @ Py, and pyy = fprmr + gon: Py — M. Then Py is projective,
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and the Snake Lemma yields an exact commutative diagram

0 0 0
[

0 UL e UM UN 0
Lo e

0 P, 25 Py = Py 0
JpL JpM JPN

0 L1 sm—2 N 0
[ |
0 0 0

We now apply Hompg(—, X) to the top two rows, and use that the middle row
is split exact, to get an exact commutative diagram (of Endg (X )-modules)

0 — Hompg(Py,X) — Homp(Py, X) —=— Homp(Pp, X) — 0

- . -
'N M L

0 —— Homp(Uyn, X) —2— Homp(Us, X) —“— Hompg (U, X).
We now apply the Snake Lemma to this diagram to obtain a long exact sequence

0 —— Homp(N, X) —— Homp(M, X) —2— Hompz(L, X) U
§

[» Exth (N, X) —%— BxtL (M, X) —2— ExtkL(L, X)

It remains to compute the morphisms. Suppose v: N — X. Then a(v): M —
X is uniquely determined by a(v)py = vpy7n. Since pymTn = gpar, we get
a(v) = vg, so a = g*. Similarly g = f*.

Next, given v: Uy — X, we have O(vey) := b*(v)eny = vbep. As in
exercises, we know beps = eng. Thus O(vey) = veng, and so 0 is just pull-back
along g. Similarly ¢ is just the pull-back along f.

Explicitly: We now construct the following commutative diagram with exact
rows

erv: 0 Upt —245 Py 2225 M 0
Pl

0 Un Q M 0
| Lk

ex: 0 Uy —2 Py 2% N 0

Thus the middle row is both the push-out and the pull-back, so bey; = eng.
Finally, we check that the connecting homomorphism is given by the push-
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out. Consider the exact commutative diagram

EN: 0 UN N PN Ll N 0
bl
e: 0 L M -2 N 0

where r is unique such that fr = giy, using that f is a kernel. In particular,
E =TEN.

Now take any A\: L — X. Recall that the connecting map in the Snake
Lemma sends A to vey, whenever v: Uy — X and p: Py — X satisfy both
wipyr = vband pep = Apr. We claim that we can take p := Appmp and v = —Ar.
For, it is clear that puty, = Appwrer, = Apr. Also, using that py; = fprmr +qmn,
we have

fro=qnniy = (pym — fromr)ive = —fprmrinm,

and since f is injective we obtain rb = —ppmwpip. Thus piy = Appmpiy =
—Arb = vb. So the connecting homomorphism from the Snake Lemma sends A
to the push-out —Arey = —Ae. Since the minus sign does not change exactness,
we can take the connecting map A — Ae as claimed. O

Remark. If a* is onto, for example if Uy is projective, then so too is the
map f* on extension classes.
There is also the dual result.

Lemma 5.12. Lete: 0 - W x4y o 0 be exact. Then for all M there
is a long exact sequence (of Endgr(M)-modules)

0 —— Homp(M, W) —L Hompg(M,X) —2— Homp(M,Y) j

Ex

[» Extl (M, W) —L— BxtlL (M, X) —%— ExtL(M,Y)

Here the map €, sendsn: M — 'Y to the pull-back en, and f. acts on extensions
as the push-out map & — fe'.
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6 Hereditary algebras
We can now introduce the notion of an hereditary algebra.
Proposition 6.1. The following are equivalent for a k-algebra R.
1. All right ideals of R are projective.
. Submodules of projective modules are themselves projective.
. If L — M, then Extyp(M, X) — Exty(L, X) for all X.

2
3
4. Quotients of injective modules are themselves injective.
5. If X - Y, then Exti(M, X) — Exty(M,Y) for all M.
6

. For all f: M — N there exists a module E fitting into a short exact

sequence
0—-M—E®Im(f) - N —0.

In this case we call R hereditary (since being projective is inherited by submod-
ules).

Proof. 2 = 3. Take two short exact sequences 0 — L oM 5N 0and0—
Uy — Py — N — 0, with Py projective. Then Uy is projective, so by Lemma
5.11 and the subsequent remark we see that f*: Exth (M, X) — Exth(L, X) is
onto for all X.

3 = 6. We can factor f via its image, so M —» Im(f) >~ N with f = 7.

By assumption the pull-back map
2 Exth(N, Ker(f)) — Extk(Im(f), Ker(f))
is onto, so we have an exact commutative diagram
0 —— Ker(f) — M —— Im(f) —— 0

H I

0 — Ker(f) E—t 5N 0

Since M is a pull-back, and b: E — N is onto, we have the short exact sequence

0—— - Botm(y) 25 N — 0.

6 = 2. Let N be projective, U < N a submodule, and write M — U with M
free (or just projective). Then U is the image of M — N, and hence there exists
Ewith0—- M — E®dU — N — 0 exact. This is split, since N is projective,
so U is a summand of M & N, and hence is itself projective by Lemma 5.5.

Dually 4, 5 and 6 are equivalent.

2 = 1. Clear.

1 = 4. Let I be injective, and 6: I — J an epimorphism. We will use Baer’s
Criterion from Lemma 5.7 to prove that J is injective. To this end, let L < R
be a right ideal, and f: L — J any homomorphism. Since L is projective we
can lift f to amap g: L — I, so f = 0g. Next, since I is injective, we can lift g
to h: R — I, so g = hi, where i: L — R is the inclusion map. Then 0h: R — J
satisfies Ohi = 0g = f, and we are done. O
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6.1 Commutative hereditary rings

Lemma 6.2. Let R be any hereditary ring. Then its centre Z is reduced (has
no non-zero nilpotent elements).

Proof. Take z € Z and consider multiplication by z as a map R — R. The
image zR is projective, so we can write R = K ® I where K = {a € R: za = 0}
is the kernel and I =5 zR. Note that I is a right ideal, and K is a two-sided
ideal. Write 1 = a+ = with a € K and € I. Then z = az + xz = xz lies in
I. If now z is nilpotent, say 2"t! = 0, then also z” € K NI = 0. We conclude
that z = 0, so Z is reduced. O

In particular, every commutative hereditary ring is necessarily reduced.

We next observe that every principal ideal domain is hereditary. For, if
I < R is a non-zero ideal, then I = aR for some a, and since R is a domain,
multiplication by a yields an isomorphism R =+ aR. Thus I = aR is a free
module.

More generally, we have the following result.

Theorem 6.3. Let R be a commutative domain. Then R is hereditary if and
only if it is a Dedekind domain.

Proof. Proof omitted. O

6.2 Tensor algebras

Let A be any k-algebra, and M an A-bimodule on which k acts centrally. We
can then form the tensor algebra

R=TaA(M):=P M " =A &M (M&s M) (M@s My M) -
n>0

The multiplication is given by concatenation of tensors, so is induced by the
usual isomorphism
MEem R MEn A M®(m+n).

Note that A is a subalgebra. Also Ry = @, M®" is a two-sided ideal,
and R/R, = A. a

Example 6.4. Let A = k be a field, and M = k a one-dimensional vector
space. Then the tensor algebra is just the polynomial algebra in one variable,
k[t]. For, we let t be any basis vector for M. Then M®"™ = k with basis vector
t".

More generally, if dim M = m, then the tensor algebra is isomorphic to the
free algebra on m wvariables k{ty,... ty). For, if t1,...,tm is a basis for M,
then M @y, M has basis t;t; for all pairs i, j, and in general M®™ has basis given
by all words of length n in the t; (so has dimension m™).

Lemma 6.5. A module over the tensor algebra Ta(M) is the same as a pair
(X,&), where X is an A-module and §: X @4 M — X is an A-module homomor-
phism. In this setting, a Ta(M)-module homomorphism f: (X,£) — (Y,n) is
the same as a an A-module homomorphism f: X — Y such that f€ =n(f®1).
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Proof. Given a T4 (M)-module X, its restriction to A is an A-module, and the
action of M induces an A-module homomorphism £: X ® 4 M — X. Conversely,
given a pair (X, ), we recursively obtain maps &,: X ®4 M®" — X, so &, =
&(&n—1 ®idps). These then combine to yield a map X ® 4 Ta(M) — X, which
endows X with the structure of a T4 (M)-module. Moreover, these constructions
are mutually inverse.

Now let f: X — Y be a T4 (M)-module homomorphism. Again, restriction
to A shows that f is an A-module homomorphism, and considering the action
of M we have f(x-m) = f(z)-m for all z € X and m € M, equivalently
f€=n(f ®idyr). Conversely, suppose we have a morphism f: (X, £) — (Y, 7).
Then the T4 (M)-module structure on X is given by the maps &, as above,
and we see that f&, = n,(f ® idyen). Thus f is a homomorphism of T4 (M)-
modules. Moreover, these constructions are again mutually inverse. O

Example 6.6. Let A = k and M = k, so that To(M) = k[t]. Then a k[t]-
module is the same as a k-module X together with a map X = X Q@ k — X,
so an endomorphism T € Endg(X), giving the action of t. A homomorphism
(X,T) — (Y,U) is a k-module homomorphism f: X — Y which intertwines the
endomorphisms, so fT =Uf.

More generally, if dim M = m, then Ta(M) = k(t1,...,tm) is the free alge-
bra on m variables, and a module for the free algebra is the same as a k-module
X together with an m-tuple of endomorphisms (Ty,...,Tn) of X. A homo-
morphism (X, Ty1,...,Tn) — (Y,U1,...,Un) is a k-module homomorphisms
f: X =Y such that fT; = U;f for all i.

6.3 The standard exact sequence
Every module over a tensor algebra fits into a standard short exact sequence.

Proposition 6.7. Let Ty(M) be a tensor algebra, and X a Ta(M)-module.
Then there is a short exact sequence

0= X @4 M@sTa(M) S X @4 Ta(M) L X -0,

where p is just the module structure and § = idx ® i — p ® idy, (), where
it M ®aTa(M) — Ta(M) is the obvious inclusion.

Proof. We consider the split exact sequence of left A-modules

0 —— X®4MeasTa(M) X2 X 0,4 Tu(M) —25 X —— 0,

where 7 sends © ® (a +m+---) to za.

Next, we have the locally nilpotent endomorphism 6 of X ® 4 T4 (M), sending
TR(MI@ - @my) € X4 MO toxm; @ (me®---@my,) € X @4 MP=1),
Then 1 — 6 is an automorphism of X ® 4 T4(M), and we have both u(1—6) =7
and (1 —0)(idx ® i) = 4. O

An algebra A is semisimple provided the regular module is a direct sum
of simple modules, which are then necessarily projective. Schur’s Lemma then
implies that every simple module is projective. It follows that every finitely
generated module is semisimple, and in fact by Zorn’s Lemma, every module is
semisimple.
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Theorem 6.8 (Artin-Wedderburn). An algebra is semisimple if and only if it
is isomorphic to a (finite) direct product of matrices over division rings.

Proof. Omitted. O

Proposition 6.9. Let A be semisimple, and M an A-bimodule. Then the tensor
algebra R = T (M) is hereditary.

Proof. Let I < R be a right ideal, set X = R/I, and consider the following
exact commutative diagram

| |

0 — XA MR — X®UR—>X —— 0

0 1 R X 0

where the bottom row is the standard exact sequence and the map R - X ®4 R
exists since R is projective. Then the left hand square is a push-out, and since
I < R, we have a short exact sequence

01T —>RP(X®aM®sR)—>X®4R—0.

Now, X4 is a projective right A-module, so X ® 4 T4(M) is a projective right
Ta(M)-module. (For, if X @Y = AW then (X @4 Ta(M))® (Y @4 Ta(M)) =
Ta(M)D) Similarly X @4 M @4 Ta(M) is a projective T (M)-module. Thus
the above short exact sequence must split, so I is a direct summand of the middle
term, which is projective. Hence I is itself projective, and so R is hereditary. [J

We can use the standard exact sequence to obtain a four term exact sequence
relating Hom and Ext. Note that this generalises the four term sequence de-
scribed in Example 5.1.

Corollary 6.10. Let A be semisimple, and R = Ta(M) a tensor algebra. Given
R-modules X and Y we have the four term exact sequence

0 — Homp(X,Y) = Homu(X,Y) 9, Hom (X ®4 M,Y) — ExtRp(X,Y) — 0.

Here, if f: X — Y is an A-module homomorphism, then O(f)(x ® m) =
f@)m — f(zm).

Proof. Apply Hompg(—,Y") to the standard exact sequence for X. Then use that
Homp(X ®4 R,Y) = Homyu (X, Homp(R,Y)) = Homa (X,Y),

and similarly for Homgp(X ®4 M ®4 R,Y). O

6.4 Path algebras of quivers

A quiver @ consists of a finite set of vertices QQyp and a finite set of arrows Q1,
where each arrow a: s(a) — t(a) starts at s(a) and has tip at t(a). Examples
include the n-subspace quiver

NN
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the Jordan quiver

D

o —=Xo

but we could also have more complicated quivers such as

and the Kronecker quiver

e}

NSRS DN A
AL LY

o

Let Q be a finite quiver. We first set A := k%0, and note that this is a
semisimple k-algebra, with a complete set of orthogonal idempotents ¢; indexed
by the vertices i € Qp. We then set M := kQ1, a vector space having basis the
arrows of (). We give M the structure of an A-bimodule by setting €;ac; = a
provided i = s(a) and j = t(a), and is zero otherwise, and then extending
linearly so that k acts centrally on M.

Consider M ®4 M. Decomposing 1 =) . ¢; in A, we have

M®@q M= @EhMEZ' Ok EiMEj.
hii,j

Thus, as a vector space, this has basis ab such that a,b € @ are arrows, and
t(a) = s(b).

In general, a path of length » > 1 in @ is a sequence p = a1 - - - a, of arrows
a; € Q1 such that t(a;) = s(a;41) for all 1 < i < r. We call the idempotents
e; the paths of length zero. Then M®" has basis the paths of length r, for all
r > 0, and so the path algebra kQ := T4 (M) is an hereditary k-algebra with
basis the set of all paths in Q. In particular, kQ is finite dimensional if and only
if there are no oriented cycles in Q.

We remark that this definition of paths is the opposite of that given by
(most) other authors, the reason being that we are dealing with right modules
but want the simple projective modules to correspond to the sinks in the quiver.

Example 6.11. Let Q be the Jordan quiver. Then kQ =2 k[t], where t corre-
sponds to the loop.

Let @Q be the n-subspace quiver. Then kQ is isomorphic to the subalgebra of
M, 11 (k) given by matrices of the form

k 0
k k

k0 k

kK 0--- 0 &k

Let QQ be the Kronecker quiver. Then kQ is given by the generalised matriz

algebra
kE 0
kK k
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Consider now modules over path algebras. As for any tensor algebra, the
modules correspond to pairs (X, &) where X is an A-module and £: X ® 4 M —
X is an A-module homomorphism. For the path algebra, we have A = k%°, so
A-modules correspond to tuples of k-vector spaces, indexed by the vertices, so
we can replace X by vector spaces X; for each vertex i. Next, we know that M
has basis given by the arrows, and so £ is completely determined by the linear
maps &,: X; — X, for each arrow a: ¢ — j. Thus kQ-modules correspond to
the data (X;,&,), often referred to as a k-representation of the quiver Q. In this
language, a homomorphism f: (X;,&,) — (Y;,m,) is given by a tuple of linear
maps f;: X; = Y; such that f;§, = n.f; for all a: ¢« — j; in other words, for
each arrow a: ¢ — j we have a commutative square

X, iy,

fa J{a
f.

X]4]>}/]

Finally, let (X;,&,) and (Y;,7n,) be two quiver representations. Then the
map § from Corollary 6.10 becomes

D Home(X;, ;) % D) Homp(X:, ;) 0(fi) = (nafi — fia).

i a: i—j

6.5 Simple modules and projective modules

Let R be any ring, and € € R an idempotent. Recall that cR is a projective
module, and that Homg(eR, M) & Me, via the map f — f(c). We say that ¢
is primitive if e R is indecomposable.

Lemma 6.12. An idempotent ¢ is primitive if and only if it is the only non-zero
idempotent in €Re.

Proof. We have seen that direct summands of a module M correspond to idem-
potents in its endomorphism ring Endg(M). One direction sends a summand L
to the idempotent ¢z, 7y, whereas if e is an idempotent, then M = Im(e)®Ker(e).
The result follows, using that Endr(eR) = ¢Re. O

Now let R = T4(M) be an hereditary tensor algebra. Note that R, =
@D,> M, so Ry = @,,5, M®", and hence (5, R = 0. We assume more-
over that A is a basic, semisimple k-algebra, so A =[], A; is a finite product
of division algebras.! Let 1 = >, ¢; be the corresponding decomposition into
(primitive, orthogonal, central) idempotents in A. Then A, = ;A is a sim-
ple A-module, which we may regard as an R-module S; via the epimorphism
R — A. Similarly, since A < R is a subalgebra, we have 1 =) . ¢; as a sum of
(orthogonal) idempotents in R, and hence P; := ¢; R is a projective R-module.

Theorem 6.13. Let A be a basic semisimple algebra, and R = Ta(M) an
hereditary tensor algebra. Write 1 = Y, e; as a sum of primitive idempotents
in A. Then

1 This is not a serious restriction, as every algebra is Morita equivalent to a basic algebra,
and an hereditary tensor algebra is basic if and only if A is basic.
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1. The P; are indecomposable projective R-modules, and S; = P;/P;R .
2. The S; are simple R-modules, and Endgr(S;) = A;. Also,

EXt}Q(Si,Sj) = EjMVEZ', where Mv = HOHlA(MA,AA).

3. If Ry is nilpotent, then Endg(P;) = A;.

Proof. (1) By the lemma, to see that P; is indecomposable, we need to show
that there is no non-zero idempotent in e;Re; other than e; itself. Suppose
x € g;Re; is idempotent; then so toois y :=¢; —x. Write x = x¢o+xz1 € A® R4,
and similarly y = yo + y1. Then xg,y9 € ¢;Ae; = A; are idempotents, and
o + yo = &;. Since A; is a division ring, the only idempotents are €; and 0,
so without loss of generality we may assume yg = 0. Then y = y; € R, is an
idempotent, so y = y"™ € R, hence y € [,~; R} = 0. Thus z = ¢;.
Now consider the standard exact sequence for S; = ¢; A

0> ARAa Ry 5 A4 R— S; — 0,

and observe that ¢, A® 4 R = ¢; = P;, and similarly e, A®4 Ry =¢; Ry = PR,
(2) Since A; is a division algebra, it is clearly simple as an A-module, and
since R — A, every R-submodule is necessarily an A-submodule. Thus S; is a
simple R-module.
Now, since S; R4 = 0, we see that for any R-module X, the submodule X R
is contained in the kernel of every homomorphism X — S;. It follows that

Homp (X, S;) = Homg(X/XR.,S;) = Homa(X/XRy, S;).
In particular, we have
HOmR(PZ‘, S]) = HomA(Si, S]) = e’:‘jAe’:‘i,

and this is zero unless ¢ = j in which case we get A;.
Applying Hompg(—, S;) to the standard exact sequence now yields

Exty(S;, ;) & Homp(P;Ry., S;) = Hom(e; M, 5;),
where we have used that
PiR,/PR% = &R, [e;R% 2 e;(Ry/RY) = e; M.

Finally we observe that M* = Hom (M4, A4) is naturally an A-bimodule, via
(afa’)(m) = a- f(a'm). This yields the map e;M*e; — Homa(e; M, A;), with
inverse sending g to g(m) := g(e;m).

(3) We have Endg(P;) 2 ¢;Re; = A; ®e;Ry¢;, and every element in ;R &;
corresponds to a nilpotent endomorphism. On the other hand, every non-zero
endomorphism of P; is necessarily a monomorphism, by Lemma 6.16. Thus
g;Rye; =0, and hence Endg(P;) & A4;. O

Example 6.14. Let QQ be a quiver. Then the simple S; corresponds to the
representation having vector space k at vertex i and zeros elsewhere, and all
linear maps zero. The projective P; corresponds to the representation whose
vector space at verter j has basis all paths from i to j, and where an arrow
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a: j — 1 sends a basis vector p, a path from i to j, to the basis vector pa, a path
from i to l.
For example, if Q is the Kronecker quiver

a

2 —=1

b

then Py = S1 is the representation
0
0 ? k

and Py is the representation

If Q is the Jordan quiver

Then kQ = k[t], the indecomposable projective is P = k[t] itself, and the sim-
ple module is S = k[t]/(t), which corresponds to the representation (k,0). On
the other hand, the representations Sy := (k,\) for X\ € k are pairwise non-
isomorphic simples. Note that the corresponding module is k[t]/(t — X).

6.6 Finite dimensional hereditary algebras

We have described the indecomposable projective modules and certain simple
modules for the hereditary tensor algebras. In this section we show that a
similar description also holds for all finite dimensional hereditary algebras (or
more generally hereditary Artinian algebras, or even hereditary semiprimary
algebras). In the process we will prove that every such hereditary algebra R
can be written as R = A® J where J is a nilpotent ideal (the Jacobson radical)
and A is a semisimple subalgebra.
Let R be an algebra. We define its Jacobson radical to be

Jac(R) := m Anng(S) = {z € R: Sz =0 for all simples S}.

S simple

We say that R is Artinian if every descending chain of ideals stabilises. Clearly,
if the regular module has finite length (for example if the algebra is finite di-
mensional over a field), then it must be Artinian. The next result shows the
converse also holds.

Theorem 6.15. An algebra R is Artinian if and only if the reqular module has
finite length, in which case the Jacobson radical J is nilpotent and R/J is a
semisimple algebra.

Proof. We begin by observing that if S is a simple module, then its annihilator
Anng(S) :={zr € R: Sz = 0} is a two-sided ideal, so J is a two-sided ideal. On
the other hand, the annihilator can also be written as the intersection [, 4s€S I,
where Iy = {z € R : szt = 0}. We observe that I, is the kernel of the surjective
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map R — S, 1 — s, so I, is a maximal right ideal. Thus J is also an intersection
of maximal right ideals.

Now, we have already noted that finite length implies Artinian, so assume
that R is Artinian. We first show that J is a nilpotent ideal. The descending
chain J D J? D J? D --- must stabilise, so J* = J"! for some n. Set
I = {r :rJ" = 0}, a two-sided ideal of R. Assume for contradiction that
I # R. Then R/I is again an Artinian algebra, so must contain a minimal right
ideal, necessarily of the form L/I for some right ideal L of R. Now L/I is a
simple R-module, so (L/I)J =0, or in other words, LJ C I. Then

LJj"=LJ"" c1J" =0,

so L C I, giving the required contradiction. Thus I = R and so J" = 0.

Next, we saw above that J is an intersection of maximal right ideals. Since
R is Artinian, it must be an intersection of finitely many maximal right ideals,
say I1,...,I,. Set S; := R/I;, a simple R-module. Then J is the kernel of
the natural map R — @, S, so R/J is a submodule of the semisimple module
@, Si, hence is itself semisimple. Thus R/J is a semisimple algebra.

To see this, take C' C {1,...,n} maximal such that (R/J) N @,;c Si = 0.
Set X := (R/J) ® @,ccSi- Then for each j, the intersection S; N X is a
submodule of the simple S;, so is either 0 or S; itself. If it is O for some j, then
we could form the direct sum X @ S}, and hence could replace C' by C'U {j}, a
contradiction. Thus every S; is contained in X, so X = €, S;. It follows from
the Krull-Remak-Schmidt Theorem that R/J = €, Si, so is semisimple.

Finally, each subquotient J"/J"*! is an R/J-module, so is a direct sum of
simple modules, and since R is Artinian, it must necessarily be a finite direct
sum, so has finite length. Using that J is nilpotent, we conclude that the regular
module itself has finite length. O

Aside. In general, we say that R is semiprimary if its Jacobson radical J is
nilpotent and R/J is a semisimple algebra. Thus Artinian implies semiprimary,
whereas a semiprimary algebra is Artinian if and only if .J/.J? has finite length.
Everything? in this section concerning hereditary Artinian algebras holds more
generally for semiprimary algebras.

Lemma 6.16. Let R be hereditary, and P and P’ projective R-modules with
P indecomposable. Then any non-zero homomorphism P — P’ is a monomor-
phism. In particular, if P has finite length, then Endg(P) is a division algebra.
If R is Artinian, then every indecomposable projective is isomorphic to a direct
summand of R, and hence has finite length.

Proof. Let f: P — P’ be non-zero. Then Im(f) < P’ is projective, so P =
Ker(f) ®@Im(f), and since P is indecomposable and f is non-zero, we must have
Ker(f) = 0.

Now suppose that P has finite length. By Fitting’s Lemma, every non-
invertible endomorphism is nilpotent, so must be zero. Hence Endg(P) is a
division algebra.

Finally, suppose that R is Artinian. Then P is a direct summand of a free
module R, then some projection P — RY) — R is non-zero, hence is injective,
and so P has finite length. Thus we have an epimorphism R™ — P, so P is
isomorphic to a direct summand of R", and hence by the Krull-Remak-Schmidt
Theorem, P is isomorphic to an indecomposable summand of R. O
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Remark. It is true that every finitely generated indecomposable projective
module for an hereditary tensor algebra T4 (M) is isomorphic to some P;. There
exists a proof for path algebras of quivers using Grobner bases, and a somewhat
obscure proof in general. Would like to find a better proof...

In general there may be many indecomposable projective modules. For a
Dedekind domain R we have Ko(R) =2 Z @ CI(R), where CI(R) is the (divisor)
class group, which is is trivial if and only if R is a principal ideal domain.

Theorem 6.17. Let R be an Artinian algebra, and decompose the regular mod-
ule R = @, P; into a direct sum of indecomposable projective modules. Write
P, = ;R with ¢; € R a primitive idempotent. Then

1. S; := P;/P,J is a simple module, and every simple R-module is isomorphic
to some S;.

2. Setting (J/J?)V := Hompg,;(J/J* R/J) we have
EX‘E}%(SZ',SJ‘) = €j(J/J2)v€i.

3. Assume further that R is hereditary. Then Endg(P;) = Endg(S;) and
R=A®J, where A is a semisimple subalgebra of R.

Proof. (1) Write m;: P; — S; for the canonical epimorphism. Then there is a
natural algebra map Endg(P;) — Endg(S;), which sends f to the unique f such
that fm; = m; f. It is surjective, since given any g: S; — S;, we can use that P;
is projective to lift the map gm; along ;.

We know that P; has finite length, so by Fitting’s Lemma its endomorphism
algebra is a local algebra. Thus Endg(.S;) is a local algebra, so again by Fitting’s
Lemma, S; is indecomposable. On the other hand, we know that S; is an R/J-
module, so is semisimple. Hence S; is simple.

Now let S be any simple module. Then we have an epimorphism R — S,
whose kernel necessarily contains J, so yields an epimorphism R/J — S. Since
R/J =@, Si, some S; — S is non-zero, and hence an isomorphism.

(2) We follow the proof used for tensor algebras. We have SJ = 0 for all
simple modules S, so for any R-module X we have

Hompg(X,S) = Homg(X/XJ,S) = Hompg, ;(X/XJ,S).

In particular, applying Hompg(—,S;) to the short exact sequence 0 — P;J —

Extp(S;, S;) = Hompg(P;J, S;) = Hompg, s (e:(J/J?),e5(R/J)) 2 e;(J/J*) e

(3) Fix representatives Py, ..., P, for the isomorphism classes of indecom-
posable projectives and write R = ), P}, where P; & P;-ij. Write P} = ¢ R for
some idempotents €7, so that R =3, ;& Re;.

Now ¢’ Re} = Hompg(P], P}). If i = j, then this is isomorphic to the semisim-
ple algebra My, (Endg(F;)). Thus A := @, €;Re} is a semisimple subalgebra of
R.

On the other hand, if i # j, then every homomorphism between the in-
decomposable projectives P; — P; has image contained in P;J. Thus every
homomorphism P; — P; has image contained in P/J. So, given x € &’ Rej, it
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corresponds to the homomorphism f: P/ — Pj’», f(g;) = x. Since f has image

contained in P/ J, we must have » € €’J. We conclude that ¢’ Re; = €} Je.

Thus J = @, ; ;= O

Theorem 6.18. Let R be hereditary Artinian, and let Py, ..., P, be represen-
tatives for the isomorphism classes of indecomposable projective modules. Then,
up to reordering, we may assume that Homg(P;, P;) = 0 for i < j. (This says
that R is a triangular algebra.)

It follows that R = A ® J, where A is a semisimple subalgebra and J is the
Jacobson radical of R.

Proof. Suppose Hompg(P;, Pj) # 0. Then we have a monomorphism P, — P,
and since this is not an isomorphism, it is not onto. Thus £(P;) < ¢(P;), and so
Hompg(P;, P;) = 0. It follows that, up to reordering, we have Homg(P;, P;) =0
for all 7 < j.

Now write R = @, P/, where P} = P%. Write P/ = £/R for some idempo-
tents £;. Since &} Re’; = Homp(P}, P/) = 0 for all i < j, we have

R=EPeiRre, = A0 T,
2]
where A := (P, 7 Re] is a subalgebra of R and J' := (P, _, €} Re] is a two-sided
nilpotent ideal. By the earlier lemma, each Endg(P;) is a division algebra, so

iR} = Endg(P) = Endr(P¥) = My, (Endg(P;))

is a semisimple algebra, so A is a semisimple subalgebra of R. In particular
R/J = Ais a semisimple R-module, so (R/J’)J = 0, or in other words, J C J'.
Conversely, let S be any simple R-module. If SJ’ = S, then since J' is nilpotent,

we must have S = SJ' = S(J')? = --- = 0, a contradiction. Thus SJ’ = 0, and
since this holds for all simples S, we see that J' C J.
Hence J/=Jand R=A® J. O

With this convention, we label the vertices of a quiver without oriented cycles
by starting at the sinks, and finishing at the sources.

We finish this section by showing that the centre of an hereditary Artinian
algebra is a product of fields. In particular, if R is an indecomposable algebra
(so has no central idempotents other than 0 or 1), then its centre is a field. Thus
we may always assume that we have an hereditary Artinian k-algebra over some
field k. (Note that R may still not be finite dimensional over k.)

Theorem 6.19. Let R be an hereditary Artinian algebra. Then its centre Z is
a product of fields.

Proof. Decompose R = @, P; as a direct sum of indecomposable projectives.
Take 0 # 2z € Z. Then z induces an endomorphism of each P;, and every
non-zero endomorphism is an automorphism. Hence we can find an idempotent
e € R such that z = ez, and multiplication by z is an automorphism of eR. In
particular, e = zx for some x € eR. We claim that e and x are both central.

Write R = eR®e' R, where ¢/ = 1—e. Then €’z = 0 and multiplication by z is
an automorphism of eR. Thus ¢’R = {r : rz = 0}, and hence eRe’ = 0 = ¢'Re.
For, take r € eRe’. Then rz = 0, so r = er = xzr = arz = 0. Similarly if
r € ¢’ Re. Hence R = eRe @ ¢'Re’.
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Next
er+er=r=re+re so er—re=re —er=0,

so e is central. Then, for all » € R, we have rz —xr € eR, but also z(rx —zr) =
re—er =0, sorrx —xr € ¢R. Thus rx — xzr = 0, and hence z is central.
Finally, write Z = @ ; e;Z as a direct sum of indecomposable projective
Z-modules. Then e; is the only non-zero idempotent in e;Z = Endz(e;Z). So,
if z € e;Z is non-zero, then by the above zz is a non-zero idempotent for some
x € Z, so zx = e; and hence e;Z is a field (with unit e;). O

An algebra R is said to be basic if the regular module is a direct sum of
pairwise non-isomorphic indecomposable projective modules. It is known that
every algebra is Morita equivalent to a basic one. For R = A @ J hereditary,
where A is semisimple and (), J” = 0, we see that R is basic if and only if A
is basic, which is if and only if A is a product of division algebras (all matrices
have size one).
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7 Finite representation type

7.1 The Grothendieck group

Let k be a field, and R an hereditary k-algebra. Assume further that R is either
finite dimensional over k, so R = A @ J where J is the Jacobson radical and
A is a semisimple subalgebra, and we set M := J/J?, or else R = Tx(M) is a
tensor algebra such that both A and M are finite dimensional over k. Finally
we will assume that A is basic, so A = A; x --- x A, with each A; a division
algebra. Write 1 = ZZ €;, where ¢g; is the unit in A;.

We consider the subcategory of R-modules consisting only of those which
are finite dimensional over k. It is clear that subquotients of and extensions
of such modules remain finite dimensional over k, so they form a nice (Serre)
subcategory.

The Grothendieck group of A is the free abelian group I' with basis the
isomorphism classes of simple A-modules. We write [X] for the isomorphism
class of an A-module X, so that I' & Z™ with basis e; := [S;], where S; =
A; = g;A. Now, using that A is a subalgebra of R, if X is an R-module, then
we can restrict attention to A to obtain an A-module X 4; moreover, if X is
finite dimensional over k, then X4 decomposes as a finite direct sum of simple
A-modules, and so we have its class [X 4] € T'.

We now equip I' with a bilinear form, called the Euler form,

<—, —>Z I'xI' — Z7 <6i,6j> = (Sij dimy Al — dimy EiMij.

Example 7.1. Let R = kQ be the path algebra of a quiver. Then I' =2 Z™ has
basis e; indexed by the vertices of Q, and every finite dimensional representation
X = (X;,&a) is sent to its dimension vector dim X := ), (dim X;)e;.

Moreover, the bilinear form is determined by (e;,e;) := 0;; — a;;, where a;;
is the number of arrows from i to j.

Proposition 7.2. Let X and Y be finite dimension R-modules. Then both
Homp(X,Y) and Exth(X,Y) are finite dimensional, and we have

(X,Y) = dimy, Homp(X,Y) — dim Exti (X,Y).

Proof. We set {X,Y} := dimy Homg(X,Y) — dimy, Exts(X,Y). We need to
check that this is finite, depends only on the classes of X4 and Y4, and that it
equals (X 4,Ya).

Suppose first that R = T4(M) is a tensor algebra. Then we can apply
Homp(—,Y) to the standard exact sequence

0> XA MKIN_UR->X®4R—-X—0
to obtain the four term exact sequence
0 — Homp(X,Y) — Homa(X,Y) — Homa(X ®4 M,Y) — Extp(X,Y) — 0.
The first three terms are finite dimensional, so the fourth is as well, and
{X,Y} = dim Hom4 (X,Y) — dim Homy (X ®4 M,Y),
which only depends on the classes of X4 and Y4. We now compute the right

hand side when X = S; and ¥ = S;. Now Homa(S;,S;) = 0 unless i =
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j, in which case it is isomorphic to A;, so dimy Hom(S;, S;) = d;; dimy A;.
Also, Hom(S; ®a M, S;) = Homy, (e;Mej, Aj). Since A; is a division algebra,
every right module is free, so we can write ¢;,Me; = A;—l for some d. Then
Homy, (e;iMej, Aj) = A;l, and so computing dimensions over k we have

dimk HOIHA(El']\/[é‘j7 AJ) = ddlmk Aj = dimk EiMé‘j.

Suppose instead that R is finite dimensional, so that every simple R-module
is isomorphic to some S;. Given a short exact sequence

0= X' —-X—=X"=0,

we can apply Hompg(—,Y") to obtain a six term exact sequence

0 —— Homp(X",Y) —— Homp(X,Y) —— Homp(X',Y) U

[» Extp(X"Y) —— Exth(X,Y) —— Extp(X',Y) —— 0.
Taking dimensions we obtain
{X,V} ={X" Y} +{X",Y}.

Similarly, if 0 - Y/ =Y — Y” — 0 is a short exact sequence, then {X,Y} =
{X,Y'} +{X,Y"}. Tt follows that {—, —} depends only on the simple compo-
sition factors of both X and Y, so we may assume that they are both simple.
As above, dimy Hompg(S;, S;) = d;; dimy A;, and

dimy, Ext}a(Si7 S;) = dimy Homy, (e;Mej, Aj) = dimy e;Mej,

where now M = J/J2.
This proves that, in both cases, {X,Y} = (X 4,Y4) for all finite dimensional
R-modules X and Y. O

The form (—,—) on T is bilinear, but not symmetric. We therefore define
the following symmetric bilinear form on I'

(X,Y) = (X,Y) + (¥, X).

Proposition 7.3. Let R be a finite dimensional hereditary k-algebra. Then the
Euler form (—,—) is non-degenerate.

Proof. We know that R is triangular, so we may assume that ¢;Je; = 0 for
1 < j. Thus the matrix representing the bilinear form (—, —) is lower triangular
with the numbers dimg A; on the diagonal, and hence is an invertible matrix.
Thus (z,y) = 0 for all y implies 2 = 0, and dually (z,y) = 0 for all z implies
y = 0. Thus the form is non-degenerate. O

This result can fail for quivers. For example, the bilinear form for the Jordan
quiver is identically zero. It can also fail if we replace the non-symmetric bilinear
form by the symmetric bilinear. For, the non-symmetric bilinear form on the
Kronecker quiver is given by ( 4 (1)), which is non-degenerate, so the symmetric
bilinear form is given by (32 }2)7 which is degenerate.
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7.2 Some natural isomorphisms

Let k be a field, R a k-algebra, and D = Homy(—, k) the usual vector space
duality. Thus, if X is a right R-module, then DX is a left R-module, via
(rf)(z) == f(zr) for f € DX, r € R and x € X. Similarly, if Y is a left R-
module, then DY is a right R-module, via (fr)(y) := f(ry) for f € DY, r € R
andyeV.

Lemma 7.4. Let X be a right R-module, andY a left R-module. Then we have
natural isomorphisms

Homp(X,DY) = D(X ®rY) = Homg(Y, DX).
Proof. These follow from the usual tensor-hom adjunction. For example
Hompg(X, DY) = Homg(X, Homg (Y, k)) =2 Homi(X®grY, k) = D(X®RY). O

Our next two results require a little more category theory. Recall that we
have the (abelian) category of right R-modules, denoted Mod R. An (addi-
tive) functor F: Mod R — Modk is an assignment of a vector space F(X)
for each R-module X, and a linear map Homp(X,Y) — Homy(F(X), F(Y)),
[+ F(f), such that F(gf) = F(g9)F(f) and F(idx) = idp(x). Examples in-
clude Homp(—, Z) or Extk(—, Z) for some fixed right R-module Z, or — ®g Z
for some fixed left R-module Z.

Given two such functors F' and G, a natural transformation n: I — G
consists of a linear map nx: F(X) — G(X) for all R-modules X, such that for
all f: X — Y we have the commutative diagram

F(X) 5 G(X)

lF(f) lcm

F(Y) 25 qy).

We say that 7 is a natural isomorphism provided 7nx is an isomorphism for all
X.

Lemma 7.5. Suppose we have a matural transformation n: F — G between
two functors F,G: Mod R — Modk. If ng is an isomorphism, then np is an
isomorphism for all finitely generated projective modules P.

Proof. We begin by observing that there is an isomorphism

F(px) . ~
(F(py)> F(XaY) = F(X)® F(Y),

with inverse (F(ix), F(iy)). Thus the natural transformation nygy yields a
linear map 0: F(X)® F(Y) — G(X) ® G(Y), which we can regard as a matrix.
For example the component F(X) — G(X) is given by

G(px)nxey Flix) = nx F(px)F(ix) = nx F(idx) = nx,

using the commutativity for the homomorphism px. Similarly, the component
F(X)— G(Y) is given by

G(py)nxey F(ix) = ny F(py)F(ix) = ny F(0) = 0.
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Thus the induced linear map is precisely 0 = nx @ ny.

So, Nxgy is an isomoprhism if and only if both nx and 7y are isomorphisms.
Now, if ng is an isomorphism, then so too is ng», and hence also np for any
direct summand P of R", so for any finitely generated projective R-module
P. O

Lemma 7.6. We have the following natural isomorphisms, for all finitely gener-
ated projective right R-modules P, all right R-modules X, and all left R-modules
Y.

1. X @g Homp(P, R) = Homp(P, X).
2. PerY = Hompr(Homgr(P,R),Y).

Proof. By the lemma above, we need to construct in each case a natural trans-
formation of functors, and show that it is an isomorphism when evaluated at
R.

1. Consider the map nz: X ®g Homp(Z, R) - Hompg(Z, X) sending = ® f
to the homomorphism z +— z f(z). This is a natural transformation of functors,
and ng is an isomorphism.

2. Consider the map nz: Z ®r Y — Homg(Hompg(Z, R),Y) sending z ® y
to the homomorphism f — f(z)y. This is a natural transformation of functors,
and ng is an isomorphism.

Alternatively, we can put Y = R into (2) to get Homgr(Homp (P, R), R) =
P®r R = P. Then (2) also yields Homg(P',R) @ Y = Hompg(P',Y) for
all finitely generated projective left R-modules P’, and swapping left and right
yields (1). O

7.3 The Auslander-Reiten translate

Let k be a field, and R = A® J a finite dimensional hereditary k-algebra. Write
D := Homy(—, k) for the usual vector space duality. We define the Auslander-
Reiten translate 7 and the inverse translate 7~ on finite dimensional R-modules
via

7X := DExth(X,R) and 7 X := Exth(DR, X).

Lemma 7.7. If X is a finite dimensional right R-module, then so too are TX
and 7~ X.

Proof. Let X be a finite dimensional right R-module. Since R, and hence also
DR, is finite dimensional, we know from Proposition 7.2 that both Ext};{(X, R)
and Extp(DR, X) are finite dimensional, so 7X and 7~ X are both finite di-
mensional.

Next, Extk(X,R) is naturally a left module over Endp(R) = R via the
push-out map. Explicitly, given a short exact sequence 0 - R - F — X — 0
and an element r € R, we can push-out along the map R — R, s — rs. Thus
7X := DExtg(X, R) is naturally a right R-module.

Dually, Exth(DR, X) is a finite dimensional right Endg(DR)-module via
the pull-back map. Then, as in the previous section, and using that R is finite
dimensional, we have

Endg(DR) = D(DR ®r R) = D*(R)

Il

R.
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Moreover, this vector space isomorphism is in fact an algebra isomorphism.
Thus 7~ X := Exth(DR, X) is naturally a right R-module via the pull-back
map. O

Lemma 7.8. Given a homomorphism f: X — Y, the push-out along f yields
a homomorphism 17— X — 77Y, and the pull-back along f induces a homomor-
phism X — 7Y . (In other words, 7% are functors.)

Proof. We have already seen that the push-out along f yields a homomorphism
Exth (DR, X) — Ext'(DR,Y) of right R-modules. Similarly, pull-back along f
yields a homomorphism Extg(Y, R) — Extp(X, R) of left R-modules, so taking
duals gives a homomorphism D Extk(X, R) — D Extk(Y, R). O

Theorem 7.9 (Auslander-Reiten Formula). Let X and Y be finite dimensional
R-modules. Then we have natural isomorphisms

Homp(7~X,Y) = DExtR(Y, X) = Homp(X,7Y).
(In other words, (17, 7) form an adjoint pair.)

Proof. Take a short exact sequence 0 — P; EN Py —Y — 0 with Py (and hence
also P;) a finite dimensional projective R-module; for example we could take
Py =Y ®4 R. Now consider the two functors

F:= DHompg(—,X) and G :=Hompg(X,DHompg(—,R))
and the natural transformation n: F' — G as in Lemma 7.6 (1)
nz: DHompg(Z, X) — D(X ®g Homg(Z, R)) = Homg(X, D Homg(Z, R)),

which is an isomorphism whenever Z is a finite dimensional projective R-module.

We now apply this to the homomorphism g: P, — Py between finite dimen-
sional projective modules to obtain the following commutative diagram where
the horizontal maps are both isomorphisms

npy

~

lF(g) lc:(g)

NPy

This induces a (natural) isomorphism between the kernels of the vertical maps
DExtR(Y, X) = Hompg(X,7Y).

For the second isomorphism, we will do slightly more. This time we start

with a short exact sequence 0 — X — Iy L) I — 0 with Iy (and hence also
1) a finite dimensional injective R-module. Note that such a sequence always
exists. For, we can a short exact sequence 0 — P| — Pj — DX — 0 with P}
a finite dimensional projective left R-module and then apply the vector space
duality D.

We now introduce the following four functors

F:= DHompg(Y,—) and G :=Hompg(Homgr(DR,—),Y)
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and also
F:=Y ®rD(-) and G :=Homg(Homg(D(-),R),Y)
Again, as in the previous section we have natural isomorphisms
F(Z) = F(Z) and G(Z) = G(2),

(where we have used that R is finite dimensional, so R = D?R), as well as a
natural transformation

F(Z)=Y ®r DZ — Homp(Homp(DZ,R),Y) = G(Z)

which is an isomorphism whenever DZ is a finite dimensional projective (left)

R-module, equivalently Z is a finite dimensional injective right R-module.
Applying these functors to the homomorphism f: Iy — I; we obtain the

commutative diagram where all horizontal maps are isomorphisms

F(I) — F(I) —— G(I) —— G(I)

JF(JC) lﬁ(f) ié(f) JG(f)

F(lo) —— F(lo) ——= G(Iy) —— G(Iy).
This yields (natural) isomorphisms between the kernels of the columns
D Exth(Y, X) = Ker(F(f)) = Ker(G(f)) = Hompg(r~ X, Y).

We finish by observing that Ker(G(f)) = Hompg(Exth(DX,R),Y). We also
have Ker(F(f)) = Torf (Y, DX), though we have not instroduced the Tor func-
tors. O

Corollary 7.10. The inverse translate 7= X := Ext(DR, X) is naturally iso-
morphic to the functor Extp(DX, R).

Proof. In the proof of the theorem we used that there is a natural isomorphism
Homp (DR, —) = Hompg(D(—), R). So, if we have a short exact sequence 0 —
X — Iy % I, — 0 with I finite dimensional and injective, then we can apply
the functors to the map g to obtain a (natural) isomorphism between their
cokernels Exth (DR, X) = Exts (DX, R). O

7.4 First properties

Theorem 7.11. A module X is projective if and only if TX = 0. On the other
hand, if X has no projective summands, then T-7X =2 X.

Dually, a module Y is injective if and only if Y = 0. On the other hand,
if Y has no injective summands, then T7"Y 2V .

Proof. Suppose X is projective. Then by definition 7X = D Exth(X,R) =
0. Suppose instead that 7X = 0. Then by the Auslander-Reiten Formula,
Exth(X,Y) = DHompg(Y,7X) = 0. This holds for all finite dimensional Y,
which since R and X are both finite dimensional, is enough to prove that X is
projective.
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Now assume X contains no projective summands, and take a short exact

sequence 0 — P ER Py - X — 0 with P, finite dimensional projective. By
Lemma 7.6 (2) we have a natural transformation

Nz: Z = 7Z®r R— Homg(Hompg(Z, R), R)

which is an isomorphism whenever Z is a finite dimensional projective module.
So, applying this to the homomorphism f: P; — Py, we obtain a commutative
square where the horizontal maps are isomorphisms

P n—j1> Hompg(Homp(Py, R), R)

lf |
n

Py — = Hompg(Homp (P, R), R)

This therefore induces a (natural) isomorphism between the cokernels of the
vertical maps. Clearly the cokernel of the left hand map is X, so we just need
to compute the cokernel of the right hand map.

Since R is hereditary, our assumption that X contains no projective sum-
mands implies that Hompg (X, R) = 0. Thus applying Hompg(—, R) yields the
short exact sequence of left R-modules

0 — Homp(Py, R) ~= Hompg(Py, R) — Extk (X, R) = DrX — 0.

We next observe that the functor Hompg(—, R) sends finite dimensional pro-
jective right R-modules to finite dimensional projective left R-modules. For,
suppose P @ Q = R™. Then we have isomorphisms of left R-modules

Homp (P, R) ® Homg(Q, R) =2 Homg(P @ Q, R) 2 Homg(R",R) = R".

It follows that the sequence above is a projective resolution of D7.X. Applying
Hompg(—, R) again proves that the cokernel of (f*)* is Extp(D7X, R), which is
isomorphic to 777X by Corollary 7.10. O

Corollary 7.12. Suppose X has no projective summands. Then
Endp(7X) =2 Endr(X) and Exth(rX,7X) 2 Exth(X,X).
Dually, if X has no injective summands. then
Endp(r~X) 2 Endr(X) and Extyp(r~X,7~ X) = Exty(X, X).

Proof. These follow from the Auslander-Reiten Formula, together with the (nat-
ural) isomorphism 777X = X. For, we have

Homp(7X,7X) 2 Homp (7~ 7X, X) 2 Homp(X, X)
and similarly
Exth(7X,7X) = DHomp (1 7X,7X) 2 DHomp(X,7X) = Ext(X, X). O

Lemma 7.13. The functor 7~ is right exact; that is, if X - Y — Z — 0 is
exact, then so too is T~ X - 7Y - 71772 — 0.
Dually, the functor T is left exact.
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Proof. Let X Lo ¥ % Z 5 0 be exact. Then, given any finite dimensional
module W, the functor Hompg(—,7W) is left exact by Lemma 4.4, so we have
the exact sequence of vector spaces

0 — Homp(Z, 7W) > Homp (Y, 7W) L Homp(X, 7W).

We now use the Auslander-Reiten Formula to deduce that the following sequence
is also exact

0 — Homp(r~Z, W) 2% Homp(r~Y, W) T2 Homp(r— X, W).
This holds for all finite dimensional modules W, so using Lemma 4.4 again we

conclude that - B

X Ih oy TSz 50
is exact. (Again note that the lemma was stated for all modules W, but as
in the proof of 3 implies 2 we just need to check against the three modules Z,
Coker(g) and Coker(f), which are all finite dimensional.) O

7.5 Preprojective, regular and postinjective modules

Let X be any module. We say that X is preprojective provided 7" X = 0 for
some n > 0, and is postinjective provided 77"X = 0 for some n > 0. We
say that X is regular provided it has neither preprojective nor postinjective
summands.

Lemma 7.14. Let X be an R-module.

1. X has no preprojective summands if and only if T7"7"X = X for all
n > 0.

2. X has no preinjective summands if and only if "7 "X = X for alln > 0.
3. X is regular if and only if "7 "X 2 X for alln € Z.

Proof. 1. Assume first that X has no preprojective summands. Then it has
no projective summands, so 777X = X. By induction we may assume that
T X 2 X. If P is a projective summand of 7*.X, then the preprojective
77 "P is a summand of 777" X = X, a contradiction. Thus 7"X has no
projective summands, so

()t x o T_"(T_T(T"X)) XX 2 X

In general, we can write X = P @ X’ with P preprojective and X’ having no
preprojective summand. Then for n > 0 we have 7"P = 0, so 77 "7"X &
T X 2 X so 77" X 2 X if and only if P =0.

2. This is dual to 1.

3. This follows from 1 and 2. O

Note. It is tempting to think that 77" = 7™ for all m,n € Z, but this
is not the case in general. However, it does hold on the subcategory of regular
modules.

We remark that every module can be written essentially unique as P @ X,
where P is preprojective and X has no preprojective summands, and also as
Y @ I where [ is postinjective and Y has no postinjective summands. We then
have the following vanishing results with respect to such decompositions.
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Proposition 7.15. Let P be preprojective, and X a module having no prepro-
jective summands. Then

Hompg (X, P) = 0 = Exth(P, X).

Dually, let I be preinjective, and X a module having no preinjective summands.
Then
Homp(I, X) = 0 = Exth(X, I).

Proof. We use the Auslander-Reiten Formula. By assumption we know that
7" P = 0 for some n > 0, whereas 777" X = X for all m > 0. Thus

Homp(X, P) 2 Hompg(r "7"X, P) 2 Homg(m" X, 7" P) = 0.
Similarly, as 7P is again preprojective, we have
Exth(P, X) = DHomp(X,7P) = 0. O

Corollary 7.16. The class of preprojective modules is closed under taking ex-
tensions and submodules. Dually, the class of postinjective modules is closed
under taking extensions and quotients. Finally, the class of regqular modules is
closed under taking extensions and images.

Proof. Consider an exact sequence 0 - X — Y — Z with Z preprojective, say
7mZ = 0 for some m > 0. Using that 7 is left exact, we have an exact sequence
0—=>7"X - 7"Y = 7"Z for all n > 0, so 7" X = 7Y for all n > m. It follows
that X is preprojective if and only if Y is preprojective, and hence that the
class of preprojective modules is closed under taking extensions (take Y — Z)
and submodules (take X = 0).

The result for postinjective modules is dual.

Finally, suppose 0 - X — Y — Z — 0 is exact, where X and Z are both
regular. Applying Hompg(—, P) shows that Hompg (Y, P) = 0 for all preprojective
modules P, and dually Hompg(I,Y) = 0 for all postinjective modules I. Thus
Y cannot have any preprojective or postinjective direct summand, so must be
regular. Now if f: X — Z is any homomorphism, we have by Proposition 6.1
(6) a short exact sequence 0 - X — Y — Z — 0 such that Im(f) a direct
summand of Y. Hence Im(f) is also regular. O

We say that an module E is exceptional provided Endg(E) is a division
algebra and Exth(E, E) = 0.

Lemma 7.17. All indecomposable preprojective modules and all indecomposable
postinjective modules are exceptional.

Proof. All indecomposable projective and injective modules are exceptional.
The result now follows from Corollary 7.12. O

7.6 The Coxeter transformation

Recall that the Grothendieck group I' has basis e; := [S;] and comes equipped
with the non-degenerate bilinear form (—, —). Also, we have the indecomposable
projective modules P; := ¢; R, and the injective modules I; := D(Re;).
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We introduce a partial order on I' by saying that > 0 provided z = ), x;e;
with z; > 0 for all i. We write I'} for the set of positive elements. We observe
that every x € T' can be written as ¢ = 4 —x_ with 1 € T'} (and with disjoint
support). Also, 'y coincides with the classes of R-modules [X]. (To see that
this is onto, we can take the classes of semisimple modules.)

Lemma 7.18. The classes of the indecomposable projectives p; := [P;] form a
basis for ', and (p;.e;) = §;; dimy, A;.

Dually, the injective modules I; := D(Re;) are indecomposable, their classes
¢ == [I;] for a basis for ', and (e;, q;) = 0;; dimy, A;.

Proof. We have the short exact sequence 0 — ¢;J — P; = S; — 0, where &;J
is again finite dimensional projective. Thus e; = [S;] equals [P;] — [g;J]], so lies
in the span of the p;. Next,

Finally we note that if « = ) . a;p;, then (z,e;) = x;d;, so the p; must be
linearly independent.

Similarly, dualising the analogous sequence for left R-modules yields the
short exact sequence 0 — S; — I; — D(Je;) — 0, where D(Jg;) is again a
finite direct sum of the I;. Thus the ¢; span I'. Also

<[Sj], [Il]> = dimkHomR(Sj, IZ) = dlmkD(S] XRRr REi) = dln’lkA]EZ = 5ij dlIIlk,14z
Finally, if y = >, vi¢i, then (e;,y) = d;y;, so the g; are linearly independent.
To see that the I; are indecomposable (which we should probably have done
earlier), we note that
EndR(IZ) = EndR(REi) = EiREi = Ai7
which is a division ring. O

Proposition 7.19. There exists a unique automorphism c of ', called the Cox-
eter transformation, such that

(y,e(x)) = —(z,y) forallxz,yeT.

Proof. Using that p; and g; form two bases for I, we can define an automorphism

cof T via ¢(p;) = —¢;. From the previous lemma we have (p;,e;) = 6;; = (e, ¢;)
for all 4, j, so by bilinearity we obtain (x,y) = —(y, c(z)) for all ,y € T'. The
uniqueness is clear, since the form is non-degenerate. O

Corollary 7.20. We have (c(x), c(y)) = (z,y) for all z,y € T.
Proof. We have (z,y) = —(y, c(x)) = (c(2), ¢(y))- H

An important consequence is that we can relate the the Coxeter transforma-
tion to the Auslander-Reiten translate.

Proposition 7.21. Suppose X has no projective summand. Then [tX] = c[X].
Dually, if Y no injective summand, then [77Y] =c~[Y].
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Proof. By assumption we have X = 777X, so together with the Auslander-
Reiten Formula we compute that

([X],[Y]) = dimy Homp(7~7X,Y) — dimy, ExtR(X,Y)
= dimy Ext (Y, 7X) — dimy, Homp(Y, 7X) = —([Y], [r X]).

Thus (y, [7X]) = —([X],y) = (y,c[X]) for all y € T';, and hence for all y € T
by linearity. Since the form is non-degenerate, we conclude that [7X] = ¢[X].
The second result is dual.

We finish with the following results, classifying the indecomposable prepro-
jective and postinjective modules in terms of their images in the Grothendieck

group.

Proposition 7.22. Let X be indecomposable. Then X is preprojective if and
only if there exists r > 0 with ¢"[X] > 0 > ¢"[X], in which case, taking
the minimal such r, we have X = 77" P;, where i is uniquely determined by
<CT[X]761'> 7é 0.

Dually, an indecomposable Y is postinjective if and only if there exists r > 0
with ¢™"[Y] > 0 > ¢ "7 [Y], in which case, taking the minimal such r, we have
Y 2 771, where i is uniquely determined by {(e;,c¢ "[Y]) # 0.

Proof. Let X be indecomposable. Then X is projective if and only if ¢[X] < 0,
in which case X = P, where ([X],e;) # 0. If X is not projective, then 7X
is indecomposable, X = 777X, and ¢[X] = [7X] > 0. Iterating this we see
that X = 77" P; for some i if and only if [X], c[X],...,c"[X] are all positive,
HX] <0, and (c"[X],e;) # 0. O

Theorem 7.23. The map X — [X] induces a bijection between isomorphism
classes of indecomposable preprojectives and the set {c¢"(p;), » > 0} NT4.

Dually, it induces a bijection between the isomorphism classes of indecom-
posable injectives and the set {c"(¢;), r >0} NT .

Proof. f X 2 77"P; is indecomposable preprojective, then [X] = ¢ "(p;) >
0. Moreover, by the previous proposition, if Y is any indecomposable with
[Y] = [X], then Y = X, and so the map is injective on isomorphism classes of
indecomposable preprojectives.

It remains to prove surjectivity. It follows from the above remarks that
the image consists of those elements x > 0 such that there exists » > 0 with
x,c(x),...,c"(x) > 0 and ¢"(z) = p; for some i. There is thus one subtlety:
we may have ¢"(z) = p; for some r > 0 and some ¢, but ¢*(x) ¥ 0 for some
O<s<r.

Suppose therefore that a,b > 0 are minimal such that ¢! ~%(p;) > 0 £ ¢=%(p;)
and c¢'=%b(p;) # 0 < ¢ %(p;). Then 7'72P; must be an indecomposable
injective, say isomorphic to I;, and so ¢~ %(p;) = —p;. Similarly, 717°P; must
be an indecomposable injective, say isomorphic to I, so ¢~ *~%(p;) = pp,.

Repeating in this way, we see that given = > 0 with ¢"(x) = p; for some
r > 0 and some 4, there exists s > 0 and j such that z,c(z),...,c°(x) = p; are
all positive, and hence that « = [77°F;]. O
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7.7 Examples

Let R = A ® J be a finite dimensional hereditary k-algebra. We have seen
that the bilinear form (—,—) on the Grothendieck group I'" depends only on
the dimensions d; := dimy A; and my; := &;(J/J?)e;. Moreover, the classes
p; = [P;] and ¢; := [I;] are completely determined by the identities

(pir e5) = 0ijdi = (ei, q;),

and the Coxeter transformation ¢ is given by ¢(p;) = —¢;. Finally, the classes of
the indecomposable preprojectives are computed as p;, ¢~ *(p;), ¢~ 2(p;), - . . stop-
ping only if we reach some g;, and dually for the classes of the indecomposable
postinjectives. Thus all this information can be calculated without explicitly
describing the indecomposable modules themselves.

For example, suppose
K 0
w= (i 3)

for some field extension K/k of degree n. Then the bilinear form (—,—) on
I' = Z? is represented (with respect to the basis e; = [S;]) by the matrix

n 0
(=)o (—n 1) '
the classes of the indecomposable projectives and injectives are
pr=(L0), p2=(1,1) and q =(1,n), ¢ =(0,1),
the Coxeter transformation c¢ acts via the matrix
-1 —n 1 n—1 n
c<—><1 n—l) and ¢ <—><_1 _1).

We can therefore compute the classes in I' of the indecomposable preprojec-
tive and postinjective modules. We display these as

D2 c(p2) *(g2) c(q2) 92
SN N N SN S
P cHp1) c3(p1) c(q1) Q1
Case n = 1.
(1,1)
N
(1,0) (0,1)

Casen = 2.

1,1 (0,1)
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Case n = 3.

(1,1) (1,2) (0,1)
7N N S
(1,0) (2,3) (1,3)
Case n = 4.
(1,1) (2,3) (2,5) (1,3) (0,1)
7N N NN S
(1,0) (3,4) (5,8) (3,8) (1,4)

Thus when n = 1, 2,3 we see that there are only finitely many indecompos-
able preprojective and postinjective modules, and these classes coincide. When
n = 4, however, there are infinitely many preprojective indecomposables and
infinitely many postinjective modules, and these classes are distinct.

7.8 Gabriel’s Theorem

We say that R has finite representation type provided there are only finite many
indecomposable modules up to isomoprhism. We say that the bilinear form on
the Grothendieck group is positive definite provided (x,z) > 0 for all = # 0.

Theorem 7.24 (Gabriel). The following are equivalent for a finite dimensional
hereditary algebra R.

1. R has finite representation type.
The classes of preprojective and postinjective modules coincide.
There are no reqular modules.

All indecomposables are exceptional.

Sro o e

The bilinear form is positive definite.

Proof. 1 = 2. We have seen that the map X — [X] is injective on isomorphism
classes of preprojective modules. Thus, since R has finite representation type,
we must have that 77" F; = 0 for r > 0, and hence that each preprojective is
necessarily postinjective. Dually, every postinjective is necessarily preprojective,
so the result follows.

2 = 1,3. Every module has a projective resolution, and since every projective
is postinjective, it follows that every module is postinjective. Dually, every
module is preprojective, so there are no regular modules. It now follows that
every indecomposable is of the form 77" P; for some r > 0 and some i, and also
that 77°P; = 0 for s > 0. Hence R has finite representation type.

3 = 4. We know that every indecomposable preprojective and postinjective
is exceptional, and by assumption there are no indecomposable regular modules.

4 = 5. Take x > 0. Then we can write z = [X] for some R-module X,
and we take such an X with dimg Endg(X) minimal. If X is indecomposable,
then it is exceptional, and so (x,z) = dim Endg(X) > 0. Assume therefore that
X = X' @ X" is decomposable. If Exth (X", X’) # 0, then we have a non-split
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short exact sequence 0 — X’ — Y — X” — 0. Applying Homg(—,Y") and then
Homp (X, —) yields that

dimg Endg(Y) < dimg Hompg (X, Y) < dimg Endg(X).

Moreover, the second inequality is strict, since otherwise we could lift the projec-
tion X — X" toamap X — Y, yielding a section X"/ — Y and showing that the
sequence is split. Since [X] = [Y], this contradicts the fact that dimy Endg(X)
is minimal. Similarly Exty(X’, X”) = 0, and so

(2',2") = dimy, Homp (X', X") + dimy, Homp (X", X") > 0,

where 2’ := [X'] and 2" := [X"]. By induction we know that (z’,z') > 0 and
(x”,2") >0, so

<.CL‘,I> _ <.%‘/ +x//7m/ +$//> _ (x'w') + <x//,x//> + (x/’x//> > 0.

In general we can write + = x4y — x_ with 1 > 0 and having disjoint
support. Then (zy,z_) <0, so

(z,0) = (24 —2— 24 —2-) = (24, 24) + (z—,2-) — (z4,2-) =20

with equality if and only if x4 =2_ = 0.

5 = 2. We begin by observing that if X = 77 rF; is indecomposable prepro-
jective, then [X] = ¢"(p;) and ([X], [X]) = (pi, pi) = d;, where d; = dimy, 4;.

Now, by extending scalars, we have a positive definite, symmetric bilinear
form (—,—) on Q®z I"' = Q™. As in the Gram-Schmidt orthonormalistaion
algorithm, we can construct an orthogonal basis in Q™. It follows that the ball
{zx € Q" : (z,x) < d} is bounded, so contains only finitely many lattice points,
that is points in I'. In particular, taking d to be the maximum of the d;, we see
that there are only finitely many x € I'y such that (z,2) < d, and hence only
finitely many indecomposable preprojective and postinjective modules.

Since the map X — [X] is injective on isomorphism classes of preprojective
modules, we must have 77" P; = 0 for 7 > 0, and hence all preprojective modules
are necessarily postinjective. Dually every postinjective module is necessarily
preprojective, so the two classes coincide. O

We finish by refining this result to show that if R is an indecomposable
algebra, then it is representation finite if and only if the classes of preprojectives
and postinjectives intersect non-trivially.

Lemma 7.25. The following are equivalent for a finite dimensional algebra R.
1. R s not an indecomposable algebra.
2. We can write R = P’ ® P"” with Homg(P', P"”) = 0 = Homg(P", P’).

3. We can write R/J = 5" & 8" with Hompg(S’,5”) = 0 = Hompg(S”,5")
and Extp(S’,8") = 0 = Extp(S",5").

Proof. 2 = 1. Suppose we have such a direct sum R = P’ @ P”. Then

R~ Endg(R) 2 Endg(P' @ P") = R' x R".
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1 = 3. Suppose R = R’ x R”. Then & = (1,0) and ¢” = (0,1) are
orthogonal central idempotents. If X’ is an R’-module, and X" an R”-module,
then X' = X'’¢’ and X" = X"e"”, so Homg(X', X") = 0 = Hompg(X", X').
In particular, take S’ := R'/J" and S” := R"/J”, so that R/J = S & S".
Then Homp(S’,S”) = 0, and also Extj(S’,S”) = Homp(J', S”) = 0. Similarly
Hompg(S”,S") = 0 = Extp(S"”,S").

3 = 2. Suppose we have such a decomposition R/J = S’ & S”. Then
we can decompose R = P’ @ P” such that P'/P'J =2 S' and P"/P"J = S".
(To see this, first decompose R = @, P; as a direct sum of indecomposable
projectives. Then R/J = @,(P;/P;J) is a direct sum of simples; now apply the
Krull-Remak-Schmidt Theorem.)

We know that .J is nilpotent, say J"T! = 0. Consider the short exact
sequences 0 — P'J™tL — P'J" — Q! — 0, so each Q. is semisimple module,
QL =5, and Q) = P'J". Next, applying Homp(—, S”) yields

Homp(P'J™ 1, 8") — Exth(Q.,S")

and
Hompg(Q..,S") = Homp(P'J",S").

Thus Homg (P, S”) =2 Hompg(S’,S”) =0, and

Homp(Q.,8") =0 = Exth(Q.,S5") =0
=  Homp(P'J",8")=0 = Homg(Q,,,5")=0.

The first implication follows since every simple module is a summand of R/J =
S’ @ 5", so if @Q is semisimple and Hompg(Q, S”) = 0, then @ is a summand of
(8")™ for some m, and hence Exth(Q, S”) = 0.

Now we similarly have Hompg(P”,S") = 0, so Homg(P", Q) = 0 for all r.
Thus applying Homg(P", —) yields

Hompg(P”,P'J") = Homg(P",P'J"™") for all 7.

Hence Hompg (P, P') = Hompg(P”, P'J"") = 0. Analogously Homg(P’, P") =
0. O

Theorem 7.26. Let R be an indecomposable, finite dimensional hereditary al-
gebra. Then R has finite representation type if and only if some non-zero module
is both preprojective and postinjective.

Proof. We have already seen that R has finite representation type if and only if
every projective module is postinjective. Suppose now that X is non-zero and
both preprojective and postinjective. Then the same holds for every indecom-
posable summand of X, and applying 7, we see that some (indecomposable)
projective module is postinjective. So we need to prove that, under the assump-
tion that R is connected, if one projective module is postinjective, then every
projective module is postinjective.

Recall that m;; = dimy e;(J/J?)e; = dimy Ext}%(Si, S;). Suppose m;; # 0.
Then we know that there is a non-zero map P; — F;, so if P; is postinjective,
then so too is P;. On the other hand, we claim that there is also a non-zero map
P; — 77 P;, so if P; is postinjective, then so too is 77 F;, and hence also P;. It
follows that the subset of vertices i for which P; is postinjective is either empty
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or everything, and in the latter case we know that R has finite representation

type.
It remains to prove the claim. We begin by observing that the map P; — P;
is a monomorphism by Lemma 6.16, so P; is not injective. Thus

dimy, Hompg (P;, 7 P;) = (pi, ¢ (p;)) = {c(ps), ;)
= _<qiapj> = dlmk, EXt}%(I“P])

Next, applying Hompg(—, P;) to the monomorphism .S; — I;, and Hompg(S;, —)
to the pimorphism P; — S}, so yields epimorphisms

Extp(I;, P;) — Extp(S:, Pj) — Exty(S;, S;).
So mi; # 0 implies Exty,(I;, Pj) # 0, and hence also Homg(P;, 7~ P;) #0. O
Remark. We saw in the proof that
dimy, Homp(P;, 7~ P;) = dimy, Extg (I, P;).
In fact, we have natural isomorphisms

Hompg(P;, 7~ Pj) = (17 Pj)e; = Ext (DR, P))e;
=~ Exty(ei(DR), P;) = Exth(D(Re;), P;) = Exty(I;, P;).
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8 Cartan data and root systems

In this section we investigate the possible bilinear forms which can arise as the
Euler form of a finite dimensional hereditary algebra, and introduce some of the
related combinatorial structures such as the root system and the Weyl group.

8.1 Cartan data

A symmetrisable generalised Cartan matrix is an integer matric C € M, (Z)
such that ¢;; = 2 for all 4, ¢;; < 0 for all ¢ # j, and there exist positive integers
d; such that d;c;; = djc;; for all ¢, 5. Setting D := diag(ds, ..., d,) we see that

B := DC is a symmetric matrix, called a Cartan datum. Note that we can
recover D, and hence C, from B, since b;; = 2d;.
Every Cartan datum B yields a symmetric bilinear form (—, —) on the lattice

I':= 7", called the root lattice. The standard basis elements e; are called simple
roots, and we equip I' with a partial order by declaring x = ), x;¢; > 0 provided
x; > 0 for all .. We also define the support of an element = ). x;e; to be
those ¢ for which z; # 0.

We can represent a symmetrisable generalised Cartan matrix C by its Dynkin
diagram A, which is the valued graph having vertices 1,...,n and a valued edge

i Lesglleasl) j whenever ¢;; # 0. We usually omit the label (1,1) for simplicity;

it is also common to relace a label (m,m) by a single m, or by m egdes.

We say that B is connected provided its Dynkin diagram A is connected. We
say that B, or A, is finite if the corresponding bilinear form is positive definite;
it is affine if the form is positive semidefinite but not positive definite; and it is
wild if the form is indefinite.

8.2 The Weyl group

Let B be a Cartan datum. We define the Weyl group W to be the group having
generators s; for 1 <4 < n subject to the relations s? = 1, and (sisj)™id =1
for ¢ # j, where the exponents m;; are determined according to the table

CijCji ‘ 0 1 2
mij ‘2 3 4

3 >4
6 oo
The Weyl group acts naturally on the root lattice I' as follows.

Lemma 8.1. There is a representation p: W — Aut(I') sending s; to the re-
flection
p(si): x—x— +(2,€)e;.

In particular, (w(z),w(y)) = (x,y) for all z,y €T and allw € W.
Proof. Define r; via the formula z — x — d%_(a:,ei)ei. Then it is easy to check
that 7? = 1 and that (r;(x),y) = (z,7;(y)). It remains to compute the order of
riry for @ # 7.

By reordering the basis elements, it is enough to compute the order of ry7s.
Now the matrix representing this automorphism is (% 9), where I is the identity
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matrix and M describes the action of 1172 on Ze; +Zes. Now 1;(e;) = e; —c;je;,
so we can compute M explicitly to be

M= <C12021 -1 —621> .
C12 -1

Thus (r172)® is represented by the matrix (sz\f(a]\/[) ), where p,(t) = (t* —
n/t-1)=t"1+. +t+1

Now, the characteristic polynomial of M is t? + (2 — c12c01)t + 1, so if
c12ce1 = 1,2,3, then the eigenvalues of M are complex conjugate primitive
m-~th roots of unity, where m = m is given by the table above. In particular,
Pm (M) =0and M™ =1, so (r1r2)™ = 1. If instead ¢12¢2; = 0, then necessarily

c12 =0 =cg1,50 M = —1 and (ry72)? = I. Finally, if ¢ijaco1 > 4, then M has a
real eigenvalue larger than 1, so M, and hence also r172, has infinite order. [

We call the generators s; of W the simple reflections. A Coxeter element in
W is then any element of the form ¢ = s;, - - - s;,, where each simple reflection
occurs precisely once.

8.3 Generalised Cartan lattices

Let B be a Cartan datum, I" the root lattice, and W the Weyl group. Given an
ordering of the simple roots i1 < --- < i,, we have the corresponding Coxeter
element ¢ = s, ---8;,, and can construct a non-symmetric bilinear form (—, —)
such that (e;, e;) = 0 whenever ¢ < j, and (z,y) + (y,z) = (z,y) for all z,y € T.
We call ', together with this bilinear form (—, —), a generalised Cartan lattice.

Proposition 8.2. The Grothendieck group of a finite dimensional hereditary
algebra is always a generalised Cartan lattice, and every such lattice arises in
this way.

Proof. Let R be a finite dimensional hereditary k-algebra. We know that R is a
triangular algebra, so €;Je; = 0 for all ¢ < j, and hence the matrix representing
(—,—) is lower triangular. We set d; := (e;,e;) = dimyp A; > 0. For ¢ # j
we have (e;,e;) = — dimy Extj(S;,S;) < 0. Moreover, this is a right module
for Endgr(S;) = A;, and a left module for Endg(S;) = A;. Since each A; is
a division algebra, we know that dimy, Extp(S;,S;) is divisible by both d; and
d;. It follows that if B is the matrix representing the symmetric bilinear form
(—,—), and D = diag(dy,...,d,), then D™'B is a symmetrisable generalised
Cartan matrix.

Conversely, let I' be any generalised Cartan lattice such that (e;,e;) = 0 for
i < j. Fix a finite field k, and an algebraic closure k. Then for each d > 0, there
is a unique subfield k4 of k containing k, and kg C k. if and only if d divides e.
We now set A := [[, A;, where A;/k is the field extension of degree d; := (e;, €;)
inside k. Similarly, for ¢ > j such that m;; = —(e;,e;) # 0, take M;;/k to be
the field extension of degree m,; inside l;:, and set M = EBM M;;. Then A; and
A; are both subfields of M;;, so M;; is naturally an A;-A;-bimodule on which &
acts centrally. Hence M is naturally an A-bimodule on which k acts centrally,
and M®" = 0, so R := Ta(M) is a finite dimensional hereditary k-algebra,
whose Grothendieck group (with Euler form) is precisely T. O
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Let T be a generalised Cartan lattice, with corresponding Coxeter element
¢=8p--+81. Then (—, —) is lower triangular, and we define

p1:=e; and p;:=s183--- Si—1(€i),

and similarly
qn =¢€n and ¢ = SpSsp_1---Sit1(e;).

Lemma 8.3. We have (p;, e;) = 0;;d; = (ej,q;). Moreover, c¢(p;) = —¢.

Proof. We begin by observing that, as s;(e;) = —e;, we have
c(pi) = sn 8181+ si—1(ei) = —sn -+ siy1(€i) = —¢;.

Next, it is clear that p; — e; lies in the span of eq, ..., e;_1, so (p;, e;) = 0 for
alli < j, and also (p;, e;) = d;. Now suppose i > j, and set a := 5,11 - s;—1(e;).
Then (ej,a) =0, so s;(a) =a— d%(a,ej)ej. Also, p; = s1---s;(a), so p; — s;(a)
lies in the span of eq,...,ej_1. Therefore

(pirej) = (sj(a),ej) = (a— 3-(a,e;)ej,e;5) = 0.

j
The proof that (e;,q;) = d;;d; is entirely analogous. O

It follows from this that if R is any finite dimensional hereditary algebra
whose Grothendieck group is given by T', then p; = [P;] and ¢; = [I;] give the
classes of the indecomposable projective and injective modules, and the Coxeter
element ¢ acts as the Coxeter transformation for R defined earlier.

8.4 Real roots and reflections

Let B be a Cartan datum, and W be the associated Weyl group. Recall that
the generators s; of W are called the simple reflections. In general we define
the set of all reflections to be

T:= {wsiw_1 cweW,1<i<n}
The set of real roots in I' is
O = {w(e;) :weW, 1<i<n}.

Note that if ¢ = ws;w™! is a reflection, and a = w(e;) the corresponding real

root, then ¢ acts on I' by t(z) = =z — d%(:z,a)a. Thus this action depends only

on a, so we can write p(t) = s,. Note also that 2(((2’;1)) = d%(w_l(x), e;) € Z.

Given an element w € W, we define its length £(w) to be the minimal length
of an expression w = s;, ---s;, involving the simple reflections, and call any
such expression of minimal length a reduced expression. Clearly ¢(w) = 0 if and
only if w = 1, and ¢(w) = 1 if and only if w is a simple reflection. It is clear
that

(w'w) < l(w') +£(w) and similarly £(w’) < f(w'w) + L(w™).
Since w and w~?! have the same length, we obtain

[0(w'w) — l(w")| < (w).
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On the other hand, we know that det(p(s;)) = —1 for each i, so det(p(w)) =
(—1)*). In particular, £(ws;) = £(w) £ 1, and every reflection ¢ € T has odd
length.

The next proposition is fundamental to the theory of Weyl groups, since it
relates the structure of the group to the geometry of the lattice I'.

Proposition 8.4. We have {(ws;) > £(w) if and only if w(e;) > 0, and similarly
l(ws;) < L(w) if and only if w(e;) < 0.

Proof. It is enough to prove that ¢(ws;) < £(w) implies w(e;) < 0. For, we know
that £(ws;) = ¢(w) £ 1, and if £(ws;) > ¢(w), then ws;(e;) < 0, so w(e;) > 0.
Consider first the rank two case. Thus we have the Cartan datum

_ (2d D
B = (—b 2d2>’ b > 0, divisible by dy, ds.

Note that W is a (possibly infinite) dihedral group, every element of W is an
alternating product of s; and s, and the reflections are precisely the elements
of odd length. We also observe that every real root is either positive or negative.
For, consider a = w(e;) = aye; +agey. Then d; = %(a7 a) = dia? +dya3 —bayasz,
so if a; and ao have different signs, then the right hand side is strictly larger
than d; and ds, a contradiction.

Without loss of generality take w such that £(ws;) < £(w). Suppose first
that w has odd length, so is a reflection. If /(w) = 1, then w = $; and w(e;) < 0.
Otherwise we can write w = s15,$1 with s, a reflection of length ¢(s,) = £(w)—2.
Then £(s,) < £(s451), so by induction s,s1(e1) < 0, whence s,(e;) > 0. We
need to show that sysq(e1) > 0, so that w(e;) < 0.

Assume therefore that s1s,(e;) < 0. Then necessarily s,(e;) = me;, and
since (sq(e1), sq(€1)) = (€1, e1), we must have m = 1. It follows that (a,e;) = 0,
S0 s and s; commute, implying w = s,, a contradiction.

Now suppose that w has even length. Then we can write w = sgs1 with
U(sq52) < (sq) < ¢(w). By induction we have sq(e2) < 0. We claim that
sq(€e1) > 0, so that w(e;) < 0.

Assume therefore that s,(e1) and s,(e2) are both negative, and write s, =
vs;v~ !, 80 a = v(e;). Then the matrix representing s, has non-positive coef-
ficients, zero trace (since s; has zero trace), and squares to the identity, so it
must be (_01 })1). Thus s.(e1) = —ea, so

—2d1 = (ehsa(eg)) = (sa(el),eg) = —2d2,

and d; = dy. Next s,(a) = —a, so a = m(e1 + e2), and since a = v(e;) we know
that (a,a) = (e;,e;) = 2d;. Thus

2d; = (a,a) = m?(e1 + e2,e1 + e2) = 2m?(2d; — b),

and since d; divides b we must have m?(2 — b/d;) = 1, so m = £1 and b = d.
It follows that (s152)% = 1, so the Weyl group is the dihedral group of order six,
and s, = $152581 = S25182. In particular, s, has maximal length, contradicting
the fact that ¢(w) > £(s,). Thus we must have s,(e1) > 0 as claimed.

We now prove the result in the general case. Again, we can take w such that
l(wsy) < l(w). If L(w) = 1, then w = s1 and w(e;) < 0. Otherwise we may

assume that £(ws1$2) < £(ws1). This shows that we can write ws; = w’w” such
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that &(w)—1 = l(wsy) = {(w')+L(w”) and w” a product of s; and s3. Now take
such an expression with £(w’) minimal. Then £(w’) < £(w’sy), £(w'ss) < £(w),
so by induction w'(e1),w’(e2) > 0. On the other hand, we have ¢(w”s1) >
(w"), so by the rank two case we have w'(e1) = x1e1 + x2e5 > 0. Then
w(er) = —z1w’(e1) — wow'(e2) < 0 as required. O

We now prove the following important consequences of this result.
Corollary 8.5. 1. The representation p: W — Aut(T') is faithful.
2. Every real root is either positive or negative, and & = —P°.

3. The length of w € W can be interpreted geometrically as
lw)={a€P®:a>0>w(a)}

Proof. 1. If w # 1, then ¢(ws;) < £(w) for some i, so w(e;) < 0 and hence
p(w) # 1.

2. Every real root is of the form w(e;) for some w and i. Now £(ws;) =
(w) £+ 1, so w(e;) is either positive or negative.

3. Set X(w) :={a € ®°:a >0 > w(a)}. Clearly X(1) = 0. Also, if
a = v(e;) € X(s;), then necessarily a = me;, so e; = mv~!(e;), and hence
m = 1. Thus X(s;) = {e;}. In general, write w = w's; with {(w') < £(w).
Then X (w) = s;(X (w')) U{e;}, which by induction has cardinality {(w’) +1 =
L(w). O

In particular, given a Coxeter element ¢, we see that the p; are precisely the
real roots a such that a > 0 > ¢(a).

8.5 Positive semidefinite Cartan data

Let B be a Cartan datum, and (—, —) the corresponding symmetric bilinear
form on the root lattice I'. We say that « € T is sincere if it has full support,
indivisible provided = my implies m = +1, and radical if (z,y) = 0 for all y.

The following result characterises the connected Cartan data of affine type.

Proposition 8.6. Let B be a connected Cartan datum, with Dynkin diagram
A. Then B is affine if and only if there exists a positive radical element in I

In this case, the sublattice of radical elements is precisely Z46 for some posi-
tive, sincere and indivisible element 6. Moreover, every proper subdiagram of A
is finite, and every Dynkin diagram properly containing A is wild.

Proof. We begin with the following observation. Let z € I' be non-zero such
that (z,z) = 0. If (z,e;) # 0 for some ¢, then

(mx + e;,mx +e;) = 2d; +2m(x,e;) for all m € Z,

so the form must be indefinite.

Suppose that B is positive semidefinite, but not positive definite. Then
there exists a non-zero x € T' with (z,z) = 0. Moreover, x must be both
sincere and radical (otherwise (z,e;) # 0 for some ¢ and the form is indefinite,
a contradiction). In particular, we see that every proper subdiagram of A is
positive definite, and every Dynkin diagram properly containing A is indefinite.
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Write ¢ = x4 —x_ with 4, 2_ > 0 and having disjoint supports. Expanding
out (z,z) = 0 yields

2z, x2) = (x4, 24) + (z_, z_).

The left hand side is non-positive, since x4 have disjoint supports, whereas the
right hand side is non-negative since B is positive definite. Thus (z4,z_) = 0,
and since B is connected and x is sincere, one of x4+ must be zero. Rescaling
we may therefore assume that x is positive, sincere and indivisible.

Conversely, suppose we have a positive radical element z € I'. Since B
is connected we know that x is sincere. Now note that 3 bj;z; = 0, and
bijx;x; <0 fori# j. Thus for all y € I' we have

) ) 2
i J

i<j i#j b iy

= Z biiys + Zyibijyj = (y,y).

i

Thus the bilinear form is positive semidefinite, and moreover (y,y) = 0 if and
only if y is proportional to x. O

8.6 The Dynkin diagrams of finite type

A, 0o—o0—o o—o
1,2
B, o— o0 —o0 o( )o
2,1
C, O ——0 —o0 o( )o
o
D, o—o0o—o o
\
o
o
Eg 0—o0—o0—o0—o0
o
E~; 0o—o0o—o0o—o0—o0—o0
o
Eg 0o—o0o—o0—o0—o0—o0—o0
1,2
Fy o—ouo—o
1,3
Go o(—’)o

Note. The subscript denotes the number of vertices.
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8.7 The Dynkin diagrams of affine type

1 —1 1
~ / \
A, 1\ /1
1 —1 1
1 1
. \ /
D, /2—2 2\
1 1
1
N |
E¢ 2
|

1—2—3 —2—1

2

E-; l1—2—3—4—3 —2—1

3

Eg 1—2—3—4—5—6—4—2

VA R S B
1\ 1\

B, 2 — 2 9 12 9 B!, 2 — 2 9 @1
- 7

C, 1929 9 o@Dy @ &Yy 5 0Dy

F, 1—2—3%2y__ o F! 1 —2—— 3%y 4

(1,3) (3,1)

G, 1—2-23 G, 1—222
Notes. The subscript is one less than the number of vertices, and the vertex
labels give the element 6 € T'.

We remark that there are a few degenerate cases.

1 1

Ay 122 A 122 D,

\2/
PN
1 1
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We also sometimes allow the Dynkin diagram

10

although this corresponds to the zero matrix, so is an example of a symmetris-
able Borcherds matrix.

8.8 The classification theorem

Theorem 8.7. The preceding lists classify the Dynkin diagrams of finite and
affine type.

Proof. We check by inspection that for each diagram on the affine list, the
corresponding element ¢ is positive, sincere, indivisible and radical. Thus these
diagrams are all of affine type. Moreover, each diagram on the finite list is
a proper subdiagram of an affine diagram, and hence is indeed of finite type.
It remains to show that every connected diagram not on one of the lists is of
indefinite type, which is necessarily the case if it properly contains some diagram
on the affine list.

b e .
Consider a valued edge (@0) , and take positive integers di,ds such
that dia = dab. Then for x = x1e1 + x2e5 € I' we have

2 2
%(x, x) = dix] — diaxiz9 + doxs.

The discriminant of this form is dyda(ab—4), so the form is indefinite whenever

ab > 4, whereas ab = 4 implies we have Ay or A’l, which are on the affine list.
Suppose next that A contains a valued edge with ab = 3, which is Go on the

finite list. If this is not all of A, then we must have a subdiagram of the form

(a’b)  (1,3) (a”b)  (31)
o o o or o o o

Consider x € T given by (1,2, 3) in the first case, and (1,2, 1) in the second case.
Then in both cases 3(z,z) = di(1 — a’) + da(1 — b'), so the form is indefinite
unless @’ = b’ = 1, in which case we have @2 or @t which are on the affine list.

We may now assume that every valued edge satisfies ab < 2. If A contains
two edge with ab = 2, then it contains one of A , C,, or (Ct with n > 2 as a
subdiagram, and thebe are all on the affine list. Suppose A contains precisely
one edge with ab = 2. Then this edge cannot lie on a cycle in A, since otherwise
the corresponding matrix is not symmetrisable. If A has a vertex of valency at
least three, then it contains one of B,, or IE%; as a subdiagram, and again these
lie on the affine list. Assume therefore that every vertex has valency at most
two. Then A is either of type B,,, C,, or Fy, which are all on the finite list, or
else is contains a subdiagram of type F, or %, which are both on the affine list.

Finally, we may assume that all valued edges satisfy ab = 1. If A contains
a cycle, then it contains some An with n > 2. Assume therefore that A is
contains no cycles (so is a tree). If it contains a vertex of valency at least four,
then it contains Dy, whereas if it contains two vertices of valency three, then
it contains some D,, with n > 5. If it contains precisely one vertex of valency
three, then either it is equal to D, or Eg 75, or else it contains I~E5,778. The only
remaining case is a tree where every vertex has valency at most two, which is
of type A,,. O
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8.9 Cartan data of finite type

The following theorem collects a number of useful characterisations of finite
type.

Theorem 8.8. The following are equivalent for a Cartan datum B.
1. B is of finite type.
2. The set of real roots ®*° is finite.
3. The Weyl group is finite.
4. Some (and hence all) Cozeter element ¢ € W has finite order.

Proof. 1 = 2. Let B be of finite type. Then the bilinear form is positive
definite, so as in the proof of Gabriel’s Theorem we know that there are only
finitely many elements a € I" with (a,a) < 2d. Taking d = max{d;} we see that
there are only finitely many real roots.

2 = 3. The Weyl group acts faithfully on I'; which is spanned by ®"¢. Thus
W acts faithfully on the finite set ®*°, so W is finite.

3 = 4. If W is finite, then every element has finite order.

4 = 1. There is a purely combinatorial proof of this, but it uses the classi-
fication theorem. An alternative approach is to use representation theory.

Given a Coxeter element ¢, we have the corresponding generalised Cartan
lattice, which we can realise as the Grothendieck group of a finite dimensional
hereditary algebra R. Now if ¢ has finite order A, then ¢"~'(¢;) = —p; < 0,
so every injective must be preprojective by Proposition 7.22. Similarly every
projective is postinjective, so by Gabriel’s Theorem R has finite representation
type and the bilinear form is positive definite. O

8.10 Gabriel’s Theorem revisited

Lemma 8.9. Let B be a Cartan datum which is either finite or rank two, and
let ¢ be any Coxeter element. Then the set of real roots is precisely the c-orbits
of the p; and gq;.

Proof. Suppose first that B is of finite type, and suppose that a is a positive
real root which is not in the c-orbit of any p; or ¢;. Then for each integer
r we know that ¢"(a) is again a positive real root, so if ¢ has order h, then
z:=a+c(a)+ -+ c""1(a) is positive and c-invariant. It follows that (z,z) =
—(x,c(x)) = —(x,x), so (x,z) = 0. Hence (x,z) = 0, a contradiction.

Now assume that B has rank two. Then taking ¢ = sos1, we have p; = ey,
p2 = s1(e2), q1 = sa2(e1) and g2 = e2. Now any Weyl group element is uniquely
of the form ¢" or ¢"sp for some r € Z, in which case ¢"(e1) = ¢"(p1) and
c"sa(e1) = "(q1). Similarly, any Weyl group is uniquely of the form ¢" or ¢"s;
for some r € Z, in which case ¢"(e2) = ¢"(¢g2) and ¢"s1(e2) = ¢"(p2). O

Proposition 8.10. Let R be a finite dimensional hereditary algebra, which
is either of finite representation type or rank two. Then every exceptional R-
module is either preprojective or postinjective, and the map X — [X] induces a
bijection between the isomorphism classes of exceptional modules and the positive
real roots.
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Proof. We know from Theorem 7.23 that there is a bijection between the iso-
morphism classes of indecomposable preprojectives and the set of positive real
roots of the form ¢ "(p;), and dually for the postinjectives. Moreover, each
indecomposable preprojective or postinjective is exceptional. When R has finite
representation type or rank two, then the bilinear form is either positive definite
(by Gabriel’s Theorem) or rank two, so the previous lemma tells us that every
real root is of this form.

It remains to show that when R has finite representation type or rank two,
then every exceptional module is either preprojective or postinjective. When R
has finite representation type, this follows from Gabriel’s Theorem.

Suppose therefore that R has rank two, and let X be an exceptional module.
We first show that = := [X] is a positive real root.

By assumption, Endg(X) is a division algebra of dimension (z,z) over k,
and for any R-module Y both Homp(X,Y') and Extp(X,Y) are naturally right
modules over Endgr(X). It follows that (x,z) divides (x,y) for all y > 0, and
hence (z,z) divides (z,y) for all y € T'. Similarly (z,z) divides (y,z) for all
yel.

Now let z € ' be any element with (z,z) > 0, and dividing both (z,y) and
(y,z) for all y € T'. We first observe that x is either positive or negative. For,
suppose x = mej; — neg with m,n > 0, and assume as usual that {ej,es) = 0.

Then (z,e2) = —n(eq, ea) = —nds and (e, x) = m(ey, e1) = mdy, and these are
both divisible by the strictly larger number (z, z) = m?2d; + n%dy + mnb, where
b= —(ea,e1) > 0, a contradiction.

Next observe that if z satisfies these conditions, then so too does every w(x)
for w € W. For, we have (s;(z),y) = (z,y) + d%(x,@)(ei,y). Since d; divides
(e;,y), we see that (z,x) divides the right hand side, and as (s;(z), s;(z)) =
(x,z), the claim follows.

Assume now that = > 0 satisfies these conditions, and is the minimal positive
element in its W-orbit. If (z,e;) < 0for i = 1,2, then (z,z) < 0 a contradiction.
Thus we must have (x,e;) > 0 for some 4, in which case s;(z) < x, so by
minimality s;(z) < 0, and hence x = me;. The divisibility conditions then give
m =1, so x = ¢; is a real root. The only other possibility is if (z,e;) < 0 for
1 = 1,2, which implies (z,z) < 0, a contradiction.

Thus X exceptional implies [X] is a positive real root, so of the form ¢~ " (p;)
or ¢"(g;), and hence X is preprojective or postinjective by Proposition 7.22. [

8.11 Conjugacy classes of Coxeter elements

Let A be a Dynkin diagram, and W its Weyl group. Given a vertex i, write A’
for the Dynkin diagram obtained by deleting vertex ¢, and let W’ be theWeyl
group of A’. Finally let W; to be the subgroup of W generated by all simple
reflections s; for j # 1.

Lemma 8.11. With the notation as above, there is a natural isomorphism
W; = W' identifying the simple reflections 55.

Proof. Since the generators s; for W; satisfy the necessary relations, we see that
there is a surjective group homomorphism W' — W; identifying the s;.

To construct the inverse map, choose a Cartan datum of type A, yielding the
root lattice I' with symmetric bilinear form (—, —). Let I'; < T" be the sublattice
spanned by the simple roots e; for j # i. Then the restriction of (—, —) to I';
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is a Cartan datum of type A’, so we can identify I'; with a root lattice I of
A’. In particular, there is a faithful representation W/ — Aut(T;), so we can
identify W' with its image.

Now the simple reflections s; for j # ¢ preserve the sublattice I';, so we
have a representation W; — Aut(I';). This identifies the simple reflactions s;
to s;, so yields a surjective group homomorphism W; — W’, inverse to the map
W' — W; given above. O

Let ¢ = s;, - - - si, be a Coxeter element in W. Suppose the simple reflections
s;, and s; , commute; equivalently there is no valued edge in A connecting
the vertices 4, and 7,41, Then swapping them leaves the Coxeter element ¢
unchanged. Such a move will be called a swap. Similarly conjugating by s;,
yields the Coxeter element s;,s;, - si,. Such a move (or its inverse) will be called
a rotation.

Theorem 8.12. If the Dynkin diagram is a tree, then any two Coxeter elements
are related by a sequence of swaps and rotations.

Suppose instead ¢ is a Cozeter element for the Dynkin diagram A,_1, so
the cycle (1,2,...,n). Let p be the number of anticlockwise arrows in the cor-
responding orientation. Then c is related by a sequence of swaps and rotations
to the Cozeter element (Spy1---Sn)(sp- -+ 51).

Proof. Suppose the Dynkin diagram is a union of trees, and let ¢ be any Coxeter
element. Let vertex 1 be a leaf, so it has a unique neighbour, say vertex 2. Since
s1 commutes with all s; for ¢ > 3, we can apply a sequence of swaps to transform
¢ into either s1¢’ or ¢’sy, where ¢’ is a Coxeter element for W’ = (sa,...,8,).
Rotating if necessary we have transformed c into ¢’s;.

By the lemma, we know that W’ is the Weyl group of the Dynkin diagram
A — {1}, which is again a union of trees. By induction we can transform ¢’ to
Sp -+ S2 by a sequence of swaps and rotations. We now show how to lift this
to a sequence of swaps and rotations transforming ¢’s; to s, ---s;. From this
it will follow that all Coxeter elements are conjugate, and can be transformed
into s, ---s; using a sequence of swaps and rotations.

Consider a Coxeter element ¢’ = s;, ---s;, in W', and the Coxeter element
c’s1 in W. Any swap on ¢” yields a swap on ¢”’s;, so consider a rotation, say
conjugating ¢’ by s;,. Rotating ¢’s; twice yields sj,s15;, - - - sj,, which we can
transform using swaps and possibly a rotation as above into s;, - --s;, s1. This
proves the result for trees.

Now suppose that A is the cycle (1,2,...,n), so affine of type An_1. We
claim that we can transform c into (s, - - - $)(Sp—1 - - - 51) for some p using swaps
and rotations. Define A; to be the subdiagram on vertices i + 1,...,n, a tree
of type A,,_;.

We begin by rotating until we have ¢’s; for some Coxeter element ¢’ for
A< 1. Note that vertex 2 is a leaf for this subdiagram, so we can use swaps to
transform ¢’ into ¢’so or sac’. Continuing in this way, we can use swaps to
transform ¢’s; into (s;---s;)¢"sj41(Si—1---s1) for some 2 < i < j < n, where
now ¢’ is a Coxeter element for A ;4q. If j = n—1, then ¢/ = 1 and we are done.
Otherwise we use swaps to transform this into ¢”’(s;8;-1 -+ 51)(Si41 - - $j8j+1),
and then rotate to get (s;41---5;41)c”(si---s1). Now vertex j + 2 is a leaf for
As 41, so we can repeat. In this way we can transform c into a Coxeter element
of the required form.
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Now, any swap leaves the induced orientation the same, whereas a rotation
corresponds to choosing a sink or source and reflecting both the incident arrows.
Thus this does not affect the number of anticlockwise arrows. Now observe that
the orientation corresponding to (Sp11 - - 8n)(Sp - - - $1) is given by making vertex
1 the unique sink and vertex p 4+ 1 the unique source, so has p anticlockwise
arrows (and n — p clockwise arrows). O

In particular, the characteristic polynomial of ¢ acting on the root lattice I"
is an invariant of A when A is a tree.
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9 Tame representation type

We say that an indecomposable, finite dimensional hereditary algebra has tame
representation type if its Grothendieck group is of affine type. The terminology
comes from the fact that in this case, even though there are infinitely many
indecomposable modules, we can classify them explicitly.

9.1 Regular modules and the defect

Let R be a finite dimensional hereditary algebra. A full subcategory 7 C mod R
is said to be thick provided it is closed under direct summands and satisfies the
2-out-of-3 property; that is, given a short exact sequence 0 - X - Y — Z — 0,
if two of X,Y, Z are in T, then so too is the third.

It is clear that intersections of thick subcategories are again thick. In par-
ticular, given a collection X of R-modules we can define thick(X') to be the
smallest thick subcategory containing X.

A thick subcategory closed under images is called a thick abelian. In this
case we can talk about T-simple modules, which are those modules X € T
having no proper submodule in 7.

Lemma 9.1. For an hereditary algebra, every thick subcategory is thick abelian.

Proof. Consider a map f: X — Y with X,Y in a thick subcategory 7. By
Proposition 6.1 (6) we know that there is a short exact sequence 0 — X —
EdIm(f) - Y —0,s0 E & Im(f), and hence also Im(f) lies in 7. O

Lemma 9.2. Let B be a Cartan datum of affine type. Then every element of
the Weyl group has finite order on I'/Z4.

Proof. We know that (J,2) = 0 for all z € T', and (x,2) = 0 if and only if
x € Z6. Thus the bilinear form restricts to a positive definite bilinear form
on I'/Zé; also s;(§) = 4§, so s; induces an action on I'/Zé. Hence we have a
representation W — Aut(T'/Z0). Now, (w(zx),w(z)) = (z,x), so by the Gram-
Schmidt algorithm we see that there are only finitely many x € T'/Z¢ for which
(z,z) < r for any r. In particular, setting r to be the maximum of (e;, e;), we

see that each orbit w(e;) is finite in I'/ZJ, and hence w itself has finite order
/7). O

Proposition 9.3. Let R be a tame hereditary algebra, and let 6 € T be the
minimal positive radical element. Then an indecomposable module X is prepro-
jective, regular, or postinjective according to whether (§, X) is negative, zero, or
positive.

Proof. We first observe that (d,e;) = 0, so s;(6) = ¢ for all i. In particular,
¢(6) = 4. Then (§,z) = (J,c"(x)), so this number is constant on c-orbits.

Now, writing 6 = ) .d;e;, we have (,¢;) = 0;d; > 0, and hence also
(0,p;y = (0, —c(q;)) = —d;d; < 0. This proves the result for preprojectives and
postinjectives. It remains to prove that all regular modules X satisfy (4, X) = 0.

Suppose X is a regular module, and set x := [X]. Then ¢"(z) = [r"X] > 0
for all » € Z. By the previous lemma we know that ¢ has finite order h modulo
§, so c(z) = x +md for some m € Z. Then ¢"™*(x) = x+rmé > 0 for all r € Z,
som=0and c"(z) =z. Set y :==x +c(x) +---+c"1(x) > 0. Then c(y) =y,
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so as in the proof of Lemma 8.9, y is a radical vector, hence a multiple of §. It
follows that h(d,z) = (6,y) = 0. O

We have shown that if R is tame, then the map I' = Z, x — (§, z), is non-
zero. In particular, its image is rZ for some r > 0, and so we define the defect
to be the normalised linear form 9(z) := (6, z).

We usually simplify notation and refer to the defect 9(X) of a module X,
instead of just the defect of its class 9([X]). Note that I' = Ker(9) @ Z[X] for
any module X of defect £1, that 9(J) = 0, and that (z,d) = —(4, x).

Theorem 9.4. Let R be an indecomposable finite dimensional hereditary alge-
bra. Then R is tame if and only if the reqular modules form a thick abelian

subcategory.
In this case, every regular-simple module S has finite order under 7. More-
over, if S has order p, then the classes [S],c[S],...,cP2[S] are linearly inde-

pendent in I', and their span is a generalised Cartan lattice of type Ap_1.

Proof. Suppose R is of affine type. We know that the class of regular modules is
closed under extensions and images, so in particular direct summands of regular
modules are again regular. Now suppose that f: X — Y is an epimorphism of
regular modules. Then its kernel has no positinjective summand and has defect
zero, hence is again regular. Similarly the cokernel of a monomorphism between
regulars is again regular, so the regulars form a thick abelian subcategory.

Now suppose that the regular modules form a thick abelian subcategory.
We first observe that the Auslander-Reiten translate is an exact functor on the
subcategory of regular modules. For, suppose that 0 - X — Y — Z — 0 is
an exact sequence of regular modules. Then 7= X — 77Y — 77 Z — 0 is again
exact, and computing the classes in the Grothendieck group we have

[T X+ [ Z] -7 Y]=c [X]+c [Z]-c[Y] = c*([X] +[Z] - [Y}) =0.

Thus the map 7= X — 77Y must be injective, so we have an exact sequence
0—>7"X—>7Y =72 —0. Similarly 0 - 7X — 7Y — 77 — 0 is exact.

It follows that if S is regular-simple, then so too is 7S for all r. Now let S’ be
another regular simple. Then by the Auslander-Reiten Formula Exty (S, S') 2
DHompg(S’,75). Since both S’ and 7.5 are regular simple, this is non-zero if
and only if S’ = 75.

We next want to show that 775 = S for some p > 0. Suppose therefore
that S,75,...,7"S are pairwise non-isomorphic. Then for 0 < i,j < r we have
(119, 798) = (S, 5) (65 — bi41;). It follows that the classes [S],c[S],...,c"1[9]
are linearly independent in I', so » < n, and their span is a generalised Cartan
lattice of type A,.

Finally, if 778 = S, then x := [S] + ¢[S] + - + P~ 1[S] > 0 is c-invariant,
hence is positive and radical. It follows from Proposition 8.6 that R has affine
type, and that z is a multiple of §. O

Let S, for z € X be representatives for the orbits of regular-simple modules,
and let p, be the order of S, under 7.

Lemma 9.5. Let R be an indecomposable, finite dimensional, tame hereditary
algebra of rank n. Then ) «(ps —1) <n —2.
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Proof. Let S be a regular-simple of order p under 7. We have just seen that
the classes [S], c[S],...,cP~2[S] are linearly independent in I', and their span is
a generalised Cartan lattice of type A,_;.

We can repeat this construction for all 7-orbits of regular-simples, and since
there are no homomorphisms or extensions between regular-simples in distinct
T-orbits, the bilinear form has block diagonal form on their span, with one block
of type A,_; for each orbit of size p. In particular, this yields a sublattice IY <T'
of rank > (p, — 1) on which the bilinear form is positive definite.

Now, since I'” has a basis given by regular-simples, it is containined inside
Ker(9), and since the bilinear form is positive definite on I", it does not contain
5. Thus the rank of IV is at most n — 2. O

Our first task is to prove that we always have equality, so > (p,—1) =n—2
for all tame hereditary algebras R.

9.2 Tame homogeneous algebras

Let R be a tame hereditary algebra. We will say that R is homogeneous if
pr =1 for all z € X. Clearly if R has rank 2, then since ) (p, —1) <n —2it
must be homogeneous. In this section we will prove the converse.

Lemma 9.6. Let R be a tame hereditary algebra, and P and Q two preprojective
modules. If 0(P) = —1, then any non-zero homomorphism P — Q is necessarily
injective, and the cokernel has no postinjective summand.

Proof. Let f: P — @ be non-zero. We know that the image is non-zero,
and both the image and kernel are preprojective. Then d(Ker(f)) = 9(P) —
d(Im(f)) > 0, so Ker(f) = 0 and f is injective. Now suppose that I is a
non-zero postinjective summand of the cokernel. Taking the pull-back yields an
exact commutative diagram

0 P E 1 0
LT
0 r Q Coker(f) —— 0.

Thus E — Q is a submodule, so is preprojective, but has defect d(E) = 9(P) +
9(I) > 0, a contradiction. O

Proposition 9.7. Let R be a tame hereditary algebra which is homogeneous.
Then Ker(0) = Z6 and R has rank two.

Proof. Let P be a (necessarily indecomposable) projective module of defect —1.
If S is a regular-simple, then R homogeneous implies that [S] = md for some
m. Let I" < T be the sublattice spanned by [P] together with the classes of all
regular-simple modules. We claim that IV =T.

Let @ be any non-zero preprojective module. Since 9(Q) < 0 we know
that there is a non-split short exact sequence 0 - @ — E — S — 0 for any
regular-simple S. If S’ is a non-zero regular-simple submodule of E, then the
composition S —+ E — S is either zero or an isomorphism, and if it is zero,
then S’ factors through the preprojective @, a contradiction. Thus S’ — S is
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an isomorphism and the sequence splits, a contradiction. We conclude that E
is preprojective.

Next, since (P,S) > 0, there is a non-zero homomorphism P — S, which
we can lift to E since P is projective. By the previous lemma the map P — F
is injective and the cokernel C' has no postinjective summands. It follows that
Q] = [P] + [C] — [5], and since 0(C) = 9(Q) + 1 we know by induction on the
defect that [C] € IV. (If 9(C') = 0, then it is regular, so lies in I by assumption.)
Using that the classes of the indecomposable projectives form a basis for I'; it
follows that IV =T as claimed.

Finally, since [S] € Z¢ for each regular simple S, we see that I" is spanned
by [P] and 0, and hence has rank two. O

9.3 Universal homomorphisms and extensions

Let R be an algebra, and X a finite dimensional R-module. We write add(X)
for the class of modules which are direct summands of some X7.

Let M be a finite dimensional R-module. A left add(X)-approximation of
M is a map Ay € Homp(M, X)) such that X); € add(X) and composition
with Aps is onto

Ay s Homp (X, X) — Homp(M, X).

A universal add(X)-extension of M is an element 7y, € Ext(M, X},) such that
X1, € add(X) and the push-out map is onto

nyr: Homp(X4,, X) — Exth(M, X).

Dually we have the notion of right add(X)-approximation p™ € Homz (XM, M)
of M and a universal add(X)-coextension n € Exth (XM, M) of M.

Lemma 9.8. Left add(X)-approzimations of M exist, as do universal add(X)-
extensions of M.
Dually, right approximations and universal coextensions exist.

Proof. Let f1,..., [, generate Hompg(M, X) as a left Endg(X)-module, and
consider f = (f;): M — X". If g is any homomorphism M — X, then there
exist {; € Endr(X) such that g =, & f;. Thus g = {f where £ = (&): X" —
X, so g factors through f.

Next let 11, ..., generate Exty (M, X) as a left Endg(X)-module. Then,
given any other ¢ € Ext}%(M,X) there exist & € Endg(X) such that { =
> &mi. Let Vi X® — X and A: M — M?* be the diagonal maps. Then the
construction of the Baer sum gives ¢ = V(@P, &n:)A. Since taking pull-backs
and push-outs commute, we can write this as ( = &n, where £ = V(6D, &) =
(&): X" — X and n = (@, i) € Extp(X®, M). Thus 7 is a universal add(X)-
extension of M. O

9.4 Rigid modules

In this section R will be a finite dimensional hereditary algebra. Recall that a
finite dimensional R-module FE is exceptional provided Endg(FE) is a division
algebra and Ext}g(E, E) = 0. In general we say that a finite dimensional R-
module E is rigid provided Exth(E, E) = 0.
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Lemma 9.9 (Happel-Ringel). Let X and Y be indecomposable modules such
that Exth(Y,X) = 0. Then any non-zero homomorphism X" — Y s either
injective or surjective. In particular, each indecomposable rigid module is ex-
ceptional.

Proof. Let f: X — Y be non-zero. Then by Proposition 6.1 (6) we have a short
exact sequence 0 — X — Im(f) ® F — Y — 0, which is split by assumption.
Thus X @Y = Im(f) @ E, so by the Krull-Remak-Schmidt Theorem we must
have either Im(f) =Y and f is surjective, or else Im(f) = X and f is injective.

In particular, let E' be indecomposable and rigid. Then any non-zero endo-
morphism is necessarily an isomorphism, so Endg(E) is a division algebra and
E is exceptional. O

Lemma 9.10. Let X,Y,Z be modules such that [X] = [Y]. If Homp(X, Z) =
0 = Extg(Y, Z), then also Homg(Y, Z) = 0 = Extp(X, Z).

Proof. Under the assumptions we have
—ExtR(X,Z) = (X, Z) = (Y, Z) = Homy(Y, Z). O

Proposition 9.11. Let X be rigid. Then Endg(X) is a triangular algebra. In
other words, taking representatives for the indecomposable summands of X, we
can order them as X1, ..., X, such that Hompg(X;,X,;) =0 fori > j.

Proof. We first observe that Ext}%(Xi,Xj) = 0 for all 7,j. In particular, each
X, is exceptional, by the Happel-Ringel Lemma. Also, if we have a circuit of
non-zero homomorphisms

Xi1_>Xi2_>"'_>Xis—>Xi17

then each map is either injective or surjective. If they were all injective, then
their composition would be a proper injective endomorphism of X, , a con-
tradiction. Similarly they cannot all be surjective. By rotating the circuit if
necessary, we then obtain a subsequence Xj; — X; — Xj;, whose composition
is neither injective nor surjective, a contradiction. Hence we can order the X;
such that Hompg(X;, X;) =0 for i > j.

Thus, if X = @ X/, then we can write Endg(X) as a matrix algebra
(HomR(X;-” , X)), which will be lower triangular with the semisimple rings
M,, (Endr(X;)) on the diagonal. O

The next result shows that rigid modules are completely determined by their
classes in the Grothendieck group. Compare this to Proposition 7.22, which says
that if X and P are indecomposable with P preprojective, then X = P if and
only if [X] = [P].

Proposition 9.12 (Kerner). Let X and Y be rigid such that [X] = [Y]. Then
XY,

Proof. We first prove that X @Y is rigid. Take a left add(X)-approximation
f: X" = Y, and write I and C for its image and cokernel. Then Hompg (X, C) =
0 = Extg(Y,C). For, we have Extn(V,Y) — Exty(Y,C), and these van-
ish since Y is rigid. Similarly Ext}%(X, I) = 0. By assumption the composi-
tion Hompg(X, X") — Hompg(X,I) — Hompg(X,Y) is onto, so Hompg(X,I) =

74



Hompg(X,Y). Thus, applying Hompg (X, —) to the short exact sequence 0 —
I -Y — C — 0 we deduce that Hompg(X,C) = 0.

By the earlier lemma it follows that Hompg(Y,C) = 0, so C = 0 and f is
onto, and then also Ext(X,Y) = 0. Analogously we must have an epimorphism
Y*® - X, and so Extg(Y, X) = 0.

Now, given an indecomposable summand X; of X, we have (Y, X;) =
(X,X1) > 0, so there exists an indecomposable summand Y; of Y and a non-
zero map Y7 — X;. Similarly, there exists an indecomposable summand Xs of
X and a non-zero map Xo — Y;. Continuing in this way we obtain an infinite
chain of non-zero maps

=Y = Xo =2 Y = Xy,

where X; and Y; are indecomposable summands of X and Y respectively. Since
there are only finitely many such indecomposable summands, we must have a
circuit, in which case all the intervening maps are isomorphisms by the previous
proposition. In particular, X and Y have a common indecomposable summand.
Removing this common summand yields rigid modules X’ Y’ such that [X'] =
[Y'] < [X] = [Y], and the result now follows by induction. O

9.5 Perpendicular categories of rigid modules

Let R be a finite dimensional hereditary algebra, and X an R-module. We
define the right perpendicular category

X+ :={Y :Homg(X,Y) =0 = Extr(X,Y)}
and the left perpendicular category
LX :={Y : Homg(Y, X) = 0 = Ext(Y, X)}.

More generally, if X is a collection of R-modules, then we define X' to be the
intersection (), X +. and similarly for the left perpendicular category - X.

Lemma 9.13. The left and right perpendicular categories are thick abelian sub-
categories.

Proof. We prove this for the right perpendicular category X' for a module
X. The result for X+ follows by taking intersections, and the result for +X is
entirely analogous.

Clearly X+ is closed under direct summands, so suppose we have a short
exact sequence 0 - A — B — C — 0 of R-modules and apply Hom(X, —).
Then we have the six term exact sequence

0 —— Homp (X, A) —— Hompg (X, B) —— Hompg(X, () U

[» Exth(X, A) —— Exth(X,B) —— Exth(X,C) —— 0.

Thus if two of A, B,C lie in X+, then so does the third, and hence X* is a
thick subcategory. It is then thick abelian by Lemma 9.1. O
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Proposition 9.14. Let X be a rigid module. Then every module M fits into a
five term exact sequence

0->M - Xg—>M-—>M' - X, -0

with Xo, X € thick(X) and MO, M*' € XL
Moreover, (X)) = thick(X) and we have natural isomorphisms

Hompg(X', Xo) = Hompg(X', M) for all X" € thick(X)

and

Homp(M°, N) = Homp(M,N) forall N € X .
Proof. We begin by taking a universal add(X)-coextension of M
0—-M—E—XM_0,

so the pull-back map Homp(X, XM) — Extp(X, M) is onto. Since X is rigid
it then follows that Extp(X, E) = 0.

Next take a right add(X)-approximation Xp — E. Since R is hereditary
and X is rigid, the image I of the composition Xp — E — XM is a direct
summand of Xp @ XM so lies in add(X). It follows that the kernel K and
cokernel X lie in thick(X). We thus have the exact commutative diagram

0 K XE I 0
0 M E xM 0
0 N MO X, 0

Applying Homp(X, —) to the middle row and column gives Exty(X, E) = 0,
and hence M° € X+,

Set J and L to be the kernel and image of K — M, and observe that J is
also the kernel of Xz — E by the Snake Lemma. In particular, Exty (X, J) = 0.
Take a left add(X)-approximation X; — J of J, say with cokernel M, and
then form the push-out, giving an exact commutative diagram

X, X,
| |

0 J K L 0
LD

0 M? Xo L 0

Since K is in thick(X), so too is Xj, and since Extg(X,.J) = 0 we have M' €
X . This yields the required five term exact sequence

0— M= Xg— M— M’ X; —0.
Next, the thick subcategory (X =) contains X, so contains all of thick(X).

Conversely, given M € +(X*), the map M — M? in the five term sequence
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must be zero, and then the short exact sequence 0 — M' — X° — M — 0
must be split. Thus M is a summand of X°, so lies in thick(X).

It now follows that X = thick(X)*. So, writing L and N for the images of
Xo — M and M — M in the five term sequence, we have for all X’ € thick(X)
that Homg(X’, N) = 0 and isomorphisms Hompg(X’, Xo) = Hompg(X', L) =
Homp(X’, M). Similarly for all Y € X+ we have Hompg(L,Y) = 0 and isomor-
phisms Homg(M°Y) = Homg(N,Y) = Homg(M,Y). O

We also have the dual construction, which we state for clarity.

Proposition 9.15. Let X be a rigid module. Then every module M fits into a
five term exact sequence

0= X' My—M—X"— M —0

with X°, X1 € thick(X) and My, M, € + X.
Moreover, (+X)+ = thick(X) and we have natural isomorphisms

Homp(X? X') = Homg(M, X') for all X' € thick(X)

and
Homp(N, My) = Homg(N, M) forall N € +X.

Let 7 C mod R be thick abelian. We define Ky(7) to be the span inside
I':= Ko(R) of all [M] for M € T.

Corollary 9.16. Let X be rigid. Then I' = Ky(thick(X)) @ Ko(X1) and
similarly T = Ko(+ X) @ Ko(thick(X)).

Proof. Using the two five term sequences we know that
Ko(thick(X)) 4+ Ko(X1) =T = Ko(thick(X)) + Ko(+X).

Also, (w,z) = 0 = (2,y) for all w € Ko(+X), v € Ko(thick(X)) and y €
Ko(X™1). Thus, given 2z € Ko(thick(X)) N Ko(X*), we have (w + x, 2) = 0 for
all w € Ko(+X) and x € Ky(thick(X)), so (—,z) = 0. Since the bilinear form
(—, —) is non-degenerate, we deduce that z = 0.

Thus Ko(thick(X))N Ko(X1) = 0, and similarly Ko(thick(X)) N Ky(+X) =
0. O

9.6 Examples
Consider the following quiver of type D5.
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We write elements in the Grothendieck group as arrays of numbers in the shape
of the quiver. We can then draw the classes of the indecomposables as usual
(the Auslander-Reiten quiver), projectives on the left, injectives on the right.

0 1 0 0

\,/‘\,/‘\,/\\//
/‘\,/\\,/\\//
\,/‘\,/\\,/\\

0 () 0 1
1 O O 1

Given an exceptional module X, we will express (X, —) as an array of num-
bers in the shape of the quiver, so that (X,Y) can be computed by taking the
sum of the products over the vertices. As X is indecomposable preprojective,
we cannot have both Hompz(X,Y) and Exth(X,Y) = D Hompg(Y,7X) non-zero.
Thus X+ consists of those indecomposables Y such that (X,Y) = 0. (In general,
this holds whenever X is indecomposable preprojective or postinjective.)

We will take one exceptional from each T-orbit. We will mark X with a
black square, and the indecomposables in X+ with a red square; the relative
projectives in X will be shaded light red. Finally we will give the quiver Q
such that X7 is equivalent to mod kQ.

Case 1
111 100
X = 11 and < —> = 1

.\,/.\'/:\,/.\,/
/‘\,/ N\, /\\//

\'/ \'/ \'/\\1

Here @ is the quiver e — o < e — o of type Ay.

0 [J
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\/\/\/\/
/\/\/\/

\
\1/ \/ \0/

Here @ is the quiver e < o — o o of type AgLIA;.

Case 3
1 -1
X = 1i1 and (X, ) = 11_2

C

Nl NN SN
N Ny N

\/\/
\1/ \1

Here @ is the quiver o — o ° o of type Ao LA LIA;.
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\/\/\ /\ /
/ \/ \ / \ /
\

/ \/ \/ \1

Here @ is the quiver e < e — o — o of type Ay.

Case 5

\ /\/\/\ /°
/ \/ \/ N\ /
N\ a

\0/ \/ \

Here @ is the quiver of type Dy.
1 y
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9.7 Projective generators

Let 7 C mod R be a thick abelian subcategory. A module Y € T is a relative
projective if Extp(Y, M) = 0 for all M € T, and is a generator if there is an
epimorphism Y" — M for all M € T.

We will first show that if X is rigid, then the thick subcategories X,
thick(X) and +X always contain a (relative) projective generator. We then
show that if Y is a projective generator for a thick abelian subcategory 7, then
we have an equivalence T = mod Endg(Y'), and that Endg(Y) is again a finite
dimensional hereditary algebra.

Lemma 9.17 (Bongartz complement). Let X be rigid. Then X+, thick(X)
and +X all contain a (relative) projective generator.

Proof. Consider the five term exact sequence for R and set Y := R? € X*.
Given M € X', take an epimorphism R™ —» M. Since Homg(R, M) =
Homp(Y, M), this map comes from some Y™ — M, necessarily surjective, so
Y is a generator. Moreover, writing L and N for the images of Xy — R and
R — Y, we have Homg(L, M) = 0 = Extg(R, M), and so Extkr(Y, M) =
Ext}%(N, M) =0. Thus Y is relative projective.

For the left perpendicular category, the corresponding construction using
the injective DR yields a (relative) injective cogenerator Y of +X. In particular
L+ X = thick(Y) and thick(X) = Y+, so contains a (relative) projective generator
as above.

We now repeat to get a (relative) injective cogenerator Z of +Y, in which
case - X = thick(Y) = Z+, and so also has a (relative) projective generator. [

In fact, when X has no injective summands, so 77~ X = X, we can use the
Auslander-Reiten Formula to show that X = (77 X)*.

Lemma 9.18. Let X be rigid, set E := Endg(X), and consider the adjoint pair
of functors F': modE — modR, M — M ®g X, and G: mod R — mod F,
N +— Hompg(X,N). Then the natural transformation n: idmear — GF (the
unit) is an isomorphism on all projective E-modules, and e: FG — idmoa r (the
counit) is an isomorphism on all N € add(X).

In other words, these functors restrict to an equivalence of additive categories
add(F) & add(X).

Proof. Recall that X is naturally an F-R-bimodule, so we do have the functors
F and G. Moreover, F(E) =2 X and G(X) = E, so they restrict to functors
between add(F) and add(X).

Next, to say that (F,G) form an adjoint pair is to say that we have a
natural isomorphism Hompg(F M, N) = Hompg(M,GN) for all M € mod E and
N € mod R (so a natural isomorphism of bifunctors).

In particular, the counit ey : FGN — N corresponds under the isomorphism
Hompg(FGN,N) = Homgr(GN,GN) to the identity on GN. More precisely,
en: Homp(X,N)®g X — N sends f ®x to f(z). Thus ex is the isomorphism
E®p X 5 X, and hence by Lemma 7.5 we know that 1y is an isomorphism
for all N € add(X).

Similarly the unit ny: M — GFM corresponds to the identity on FM.
More precisely nas(m) is the map X — M ®p X, © — m ® x. Thus, given
a € E = Endg(X), the composition exng(a) is the map X — E®p X = X,
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x — a(z), so equals a. Hence ng is an isomorphism, so 1y, is an isomorphism
for all M € add(E). O

When X is a relative projective generator in thick(X), then we can extend
this to an equivalence mod E 2 thick(X).

Proposition 9.19. Let R be a finite dimensional hereditary algebra, X a rigid
module, and E = Endg(X). If X is a relative projective generator in thick(X),
then we have an equivalence mod E = thick(X). Moreover, E is again a finite
dimensional hereditary algebra.

Proof. Take M € mod E, and take a presentation E" — E* — M — 0. As in
the proof of Lemma 7.13, it follows that the functor F = —®pg X is right exact,
so we obtain an exact sequence X" — X° — FM — 0 in thick(X). Then, as
X is a relative projective, the functor G is exact on thick(X), and so we obtain
an exact commutative diagram

E" E? M 0

71ETJ/I nESJ} J,WM

GF(E") —— GF(FE*) —— GF(M) —— 0

Thus 1, is an isomorphism by the Snake Lemma.

Conversely, take N € thick(X). Since X is a generator there is an exact
sequence X" — X° — N — 0 in thick(X). Again, G is exact and F' is right
exact, so we obtain the exact commutative diagram

FG(X") — FG(X?) — N — 0

Exrlz axslz JEN

X" X N 0

Thus e is an isomorphism by the Snake Lemma.

Finally, we will use Proposition 6.1 (6) to prove that E is hereditary. Given
f: M — M’ in mod E, we apply F and use that R is hereditary to get a short
exact sequence 0 — F(M) — Im(F(f)) ® N — F(M’) — 0. This lies in
thick(X), so we can apply G to obtain the short exact sequence 0 — M —
Im(f) ® G(N) - M’ — 0 in mod E. Hence E is hereditary. O

Corollary 9.20. Let X be exceptional. Then thick(X) = add(X).

Proof. Since X is exceptional we know that £ = Endz(X) is a division algebra,
and hence (as for fields) that mod E' = add(E). Under the equivalence add(E) =
add(X) we conclude that add(X) = thick(X). O

9.8 The tubular type of a tame hereditary algebra

Let R be a finite dimensional, indecomposable, tame hereditary algebra of rank
n. Recall that we have representatives S, with z € X for the 7-orbits of regular-
simple modules, that S, has finite order p, under 7, and that > ¢ (p,—1) < n—2.
The list of numbers p, > 1 is called the tubular type of R.

We also know that R is homogeneous, that is p, = 1 for all «, if and only if
n=2.
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Theorem 9.21. Let R be a finite dimensional, indecomposable, tame hereditary
algebra of tubular type (p1,...,pr). Take regular-simples S; from each of the
corresponding orbits. Then X = @, S; is rigid, and X+ = modE for some
finite dimensional tame hereditary algebra E of tubular type (p1 —1,...,p, —1).

Moreover, the Tg-orbits of regular-simples are again indexed by X.

Proof. We know that each S; is exceptional, and there are no homomorphisms
or extensions between distinct orbits, so X := @, S; is rigid. Using the theory
developed in the previous section we have X+ = mod E where E is again a
finite dimensional hereditary algebra.

We know that Exth(S;,7S;) = DEndg(S;), so up to equivalence there
exists a unique non-split short exact sequence 0 — 75; — 51[2] 58 = 0.
Then S’?] lies in X+. Moreover, by considering dimensions, Ext}(S;, 7.5;) must
be a simple right Endg(S;)-module. Applying Hompg(S;, —), the connecting
map Endg(S;) — Extk(S;,7S5;) is a non-zero map between simple Endg(S;)-
modules, hence an isomorphism. Since Hompg(S;,75;) = 0 = Extk(S;, S;) it
follows that 51[2] € i+, and hence also lies in X .

If p; > 2, then also 77.5; € Si for 2 < j < p;, and hence they also lie in X .
It follows that

mid= Y [P8] =[S+ Y [7Si] € Ko(XH).

0<ji<pi 2<j<pi

Now the Euler form on mod F is just the restriction of the Euler form on
mod R to the sublattice Ko(X1), and this contains a multiple of §. Thus the
Grothendieck group Ko(FE) is of affine type, so E is tame, and for M € X*,
its defect as an F-module is (a multiple of) its defect as an R-module. In par-
ticular, the regular E-modules are precisely the modules M € X+ which are
regular as an R-module.

Thus, if S, is regular-simple of order p, = 1, then S, € X and S, is a
regular-simple E-module. Similarly, if p; > 2, then each 798; for 2 < j < p; is
regular-simple as an E-module.

Finally, Slm is regular-simple in X1. For, given a regular submodule T of

S?], we obtain an exact commutative diagram
0 K T 1 0
0 7S, — S T 5 0

(3

Since 75; and S; are both regular-simples, K is either 0 or all of 7.5;, and I is
either zero or all of S;. Thus T is either 0, 7S;, S; or 5’2[2]. Moreover, S; cannot
occur since 51[2] € S+, and 75; ¢ X1, proving that T is regular-simple in X+
as claimed. (In fact, we have an algebra isomorphism EndR(Sl[Q]) = Endg(S;).)

We claim that this gives all regular-simple modules in mod F. Let 0 #
S € X+ be regular. Then it has a regular-simple submodule as an R-module,
so either S, with p, = 1, or else 79S; with 2 < j < p;, or else S; or 75;.
In the first two cases these are again regular modules in X, and the third
cannot occur since S € X+. In the fourth case we apply Homg(—, S) to the
exact sequence defining 51[2] to get HomR(Sl[Q],S) >~ Hompg(7S;,5), so there
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is a non-zero homomorphism Slm — S, and this is necessarily injective since
S g regular-simple as an EF-module. Thus there are no other regular-simples

FE-modules.

Although there is no nice way to construct the Auslander-Reiten trans-
late of mod F in terms of that on mod R, we can compute its orbits on the
regular-simples using that Ext}(S,5') # 0 if and only if S’ = 755. We
have Ext}{(Sm,Sm) # 0 for all regular-simples S, with p, = 1. Similarly
Ext},(778;, 77118;) for all 2 < j < p; — 1. Also, using the short exact se-
quence for S’?] we have EXt};:(SZm,TQSi> — Exth(75;,728;) # 0, and similarly
Exth(7=S;, S = Extk(rS;, 5;) # 0.

For p; > 2 this gives the 7g-orbit of regular simples SZP], 7285, ..., P18, of
order p;—1. For p; = 2 this gives Extk (7S}, SZ[Q]) # 0, so Ext}%(Si[Q]7 SEQ]) # 0 and
51[2] has period 1 = p;—1. This proves that E has tubular type (p1—1,...,p,—1),
and that the Tg-orbits of regular simples are again indexed by X. O

Corollary 9.22. Let R be an indecomposable, finite dimensional tame hered-
itary algebra. Let X index the T-orbits of regular-simple R-modules. Let S; be
one regular-simple from each T-orbit of size p; > 1, and set X := {178; : 0 <
j<pi—1}. Then X+ = mod E for a finite dimensional tame hereditary algebra
of rank two. Moreover, the corresponding embedding mod E — mod R identifies
the reqular-simple E-module with the indecomposable reqular R-modules Sa[cpz]
having regular composition factors (from top to bottom) Sy, 7S,..., TP+~ 1S,.

Proof. Let R have tubular type (p1,...,p,) and set X := @, S;. By the theorem
X1 = mod E’, where E’ has tubular type (p1—1,...,p,—1). The corresponding
embedding mod E/ — mod R identifies the regular-simple E’-modules with the
regular R-modules S, for p, =1, SZ[Q] and 775; for 2 < j < p; — 1.

We can now repeat, using the regular-simple E’-modules 52[2] for p; > 2.
This gives an embedding mod E” — mod R, where E” has tubular type (p; —2)
(involving just those p; with p; > 2), whose image is right perpendicular to
all S; for p; > 1 and all 51[2] for p; > 2. Note that this is the same as being
perpendicular to all S; for p; > 1 and all 7.5; for p; > 2. Moreover, the regular-
simple E”-modules are identified with S, for p, = 1, SZ[Z] for p; = 2, and 51[3]
together with 77.5; with 3 < j < p; — 1 for p; > 2. Here, 52[3] is the middle term
of a non-split extension of Slm by 72;, so has regular composition factors (from
top to bottom) S;, 7S;, 72S;.

Continuing in this way we see that there is a tame homogeneous algebra
E, necessarily of rank two, and an embedding mod £ — mod R. The image is
identified with X+, where X = {775; : 0 < j < p; — 1}. The regular-simple
E-modules are identified with the indecomposable regular modules Sg[;p ”], having

regular composition factors (from top to bottom) S,,7S,,...,7P<~1S, for all
zeX. O

Corollary 9.23. Let R be an indecomposable, finite dimensional, tame hered-
itary algebra of rank n and tubular type (p1,...,pr). Then the Grothendieck
group has basis §, [17.5;] for 0 < j < p; — 1 and [P], where P is indecomposable
preprojective of defect —1. In particular, ) x(py —1) =n —2.
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Proof. Set X = {778; : 0 < j < p; — 1}. By Theorem 9.4 we know that
Ko(thick(X)) has basis [77S;], so rank > ,(p; — 1). On the other hand, using
induction as in the proof of the corollary above, together with the earlier result
from Corollary 9.16, we conclude that I' = Ky (thick(X)) @ Ko(X*), and that
Ko(X+) has rank two. Moreover, some positive multiple of § lies in Ko(X'+),
so necessarily § € Ko(X+). Finally, if P € X1 is a non-zero relative projective
of maximal defect, then necessarily ¢ and [P] form a basis for Ko(X*), and so
P has defect —1. O

Corollary 9.24. Let R be a finite dimensional, indecomposable, tame hereditary
algebra of tubular type (p1,...,pr). Then the action of the Coxeter element ¢
on the Grothendieck group I' has characteristic polynomial

i —1

Xc(t):(t_l)zn t—1 "~

It follows that the tubular type of R depends only on the conjugacy class of the
Cozeter transformation. In particular, if the Dynkin diagram is a tree, then
all Coxeter elements are conjugate and so the tubular type depends only on the
Dynkin type.

Proof. We compute the action of the Coxeter transformation with respect to the
basis 6, [17.9;] = ¢7[S;] for 0 < j < p; —1, and [P], where P is an indecomposable
preprojective of defect —1.

We know that ¢ fixes §, and sends ¢/[S;] to ¢/T1[S;] for 0 < j < p; — 1.
Since Y < jcp, [778;] = m;6 for some m; > 0, we see that ¢ sends [rPi~25,] to
m;o — 20§j<pi71[7—j5i]‘ Finally, ¢[P] — [P] has defect zero, so lies in the span
of § and the [r7S;]. Thus the matrix for this action has the following form

1

V1 M1 0 1

V2 M2 c.

. ,  where M; = :

: . 0 1
Uy M, -1 - =1 -1
* * * * 1

the matrix M; has size p; — 1, and v; = (0,...,0,m;)". Thus x.(t) = (¢t —
1)2 ], det(t — M;), and by expanding down the first column and using induction
we see that det(t — M;) =tPi=t +..+t+1= (P —1)/(t —1). O

The following table lists the Dynkin diagrams of affine type, together with a
choice of Coxeter element ¢ = s,, - - - s1, indicated by the labelling of the vertices;
the defect 9, indicated by the dot product with an element in the Grothendieck
group; the class of one regular-simple from each 7-orbit of order p > 1, together
with its period p.
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Dynkin Coxeter element defect regular  period
type simple

100
2—3 000"
p
A 000
Anfl 1( >n _1 1
000
p+l—p+2-n—1 000 np
100

AN e
Dy_1 /3*4 n—2 000 111 2

\
3-2-1-4-5

11110

1
0112211

E 8 2 1 5
' 4-3-2-1-5-¢-7  111-4111 0011100

0
0011111

2
01122321

E i 3 1
65.4.3.9 1.7 11111—622 00111221

1
00001110
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Dynkin Coxeter element defect regular  period
type simple
A, 1922 192y —2001 0100 n—1
! 2
111
- BN 1 0
By_1 3 n-1"n 001
2/ =t
100 n—2
0
2
221 2
. BN 1 0
E%_l 3. n—12Yn 002
2 -1 0
100 n-—-2
0
Cp_1 1929 p—122p -1001 0100 n-—1
Ct_, 1222192 ~1001 0100 n—1
N 01120 2
Fy 1—2—3%%4— 5  —1-1-111
00110 3
N 01110 2
! 1—2—3%24— 5 —1-1-122
00210 3
Go 1—24%3 ~1-11 011 2
¢ (3,1) -
Gt 1—2%3 d=-1-13 031 2
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