Representations of hereditary algebras Exercises 1

1. Let $0 \to U \xrightarrow{f} M \xrightarrow{g} V \to 0$ be a short exact sequence of *R*-modules. Show that *M* has finite length if and only if both *U* and *V* have finite length, in which case the simple subquotientes of *M* are precisely those of *U* and *V* combined (with multiplicities). In particular, $\ell(M) = \ell(U) + \ell(V)$.

Hint: Given composition series for U and V, show how to construct a composition series for M, and identify the simple subquotients. For the converse it is now enough to show that M finite length implies both U and V finite length. So, starting from a composition series for M, show that the term-wise intersection with U gives a chain of submodules with subquotients either simple or zero. Similarly for the term-wise images in V.

- 2. Let M_i be a family of *R*-modules indexed by a set *I*. Prove the following about their direct sum $\coprod_i M_i$ and direct product $\prod_i M_i$.
 - (a) For all X the map

$$\operatorname{Hom}_{R}(\coprod_{i} M_{i}, X) \to \prod_{i} (M_{i}, X), \quad f \mapsto (f\iota_{i}),$$

is a bijection (in fact an isomorphism of left $\operatorname{End}_R(X)$ -modules).

(b) For all X the map

$$\operatorname{Hom}_{R}(X,\prod_{i}M_{i})\to\prod_{i}(X,M_{i}),\quad f\mapsto(\pi_{i}f),$$

is a bijection (in fact an isomorphism of right $\operatorname{End}_R(X)$ -modules).

3. Recall that a kernel for $f: L \to M$ is a map $i: K \to L$ such that fi = 0and if $\alpha: X \to L$ satisfies $f\alpha = 0$, then there exists a unique $\bar{\alpha}: X \to K$ with $\alpha = i\bar{\alpha}$.

Show that kernels are unique up to unique isomorphism; that is, if $i': K' \to L$ is another kernel for f, then there exists a unique map $h: K \to K'$ with i'h = i, and moreover h is an isomorphism.

Hint: Use that i is a kernel to construct a map $h': K' \to K$, and use uniqueness to prove that h and h' are inverses of one another.

- 4. Let M be an R-module. We say that a subset $S \subset M$ generates M provided every element of M can be written as a finite sum $\sum_i m_i r_i$ with $r_i \in R$ and $m_i \in S$. If we can take S to be finite, then we say that M is finitely generated. We say that M is Noetherian provided every submodule is finitely generated.
 - (a) Let $0 \to U \xrightarrow{f} M \xrightarrow{g} V \to 0$ be a short exact sequence of *R*-modules. Show that *M* is Noetherian if and only if both *U* and *V* are Noetherian.

Hint: Suppose U and V are both Noetherian, and that $N \leq M$ is an arbitrary submodule. Take finite subsets $S, T \subset M$ such that S generates $N \cap U$ and the images g(T) generate $g(N) \leq V$. Prove that the union $S \cup T$ generates N, and hence that N is finitely generated.

(b) Recall that R is a (right) Noetherian ring provided it satisfies the ascending chain condition on right ideals. Explain why this is the same as saying that the (right) regular module R_R is Noetherian. Now let R be Noetherian. Prove that an R-module M is Noetherian if and only if it is finitely generated, which is if and only if it is a quotient of some Rⁿ.
In particular, it follows that every finitely generated R-module is the salward of some R^m → Rⁿ which we can represent as a matrix

cokernel of some map $\mathbb{R}^m \to \mathbb{R}^n$, which we can represent as a matrix in $\mathbb{M}_{n \times m}(\mathbb{R})$. This was used in the classification of finitely generated modules over a principal ideal domain.

5. Let R be a principal ideal domain, and $p \in R$ a prime. Prove that R/pR is a simple R-module, and that $R/p^n R$ has a composition series of length n with all simple subquotients isomorphic to R/pR.