
Representations of hereditary algebras
Exercises 3

Let L/K be a field extension, and consider L as a K-L-bimodule. Then we
have the hereditary algebra

R = TL⊗K(L) ∼=
(
L 0
L K

)
.

We wish to investigate indecomposable R-modules in some easy cases. We write
n := [L : K] = dimK L for the degree of the field extension.

Now, modules over R correspond to representations (VL, UK ; θ), where VL

is an L-vector space, UK is a K-vector space, and VL
θ←− UK ⊗K L is an L-

linear map. Choosing bases, we see that every such representation gives rise to
a matrix θ ∈Me×d(L), where e = dimL V and d = dimK U .

Next, homomorphisms (V,U ; θ) → (V ′, U ′; θ′) are given by pairs (g, f),
where g : V → V ′ is L-linear, f : U → U ′ is K-linear, and gθ = θ′(f⊗1). Again,
choosing bases, we see that two matrices θ, θ′ ∈Me×d(L) correspond to isomor-
phic representations if and only if there exist invertible matrices g ∈ GLe(L)
and f ∈ GLd(K) such that gθ = θ′f .

Thus, for fixed integers (e, d) we wish to understand matrices in Me×d(L),
but where we can apply L-linear row operations (the action of GLe(L) on the
left) and K-linear column operations (the action of GLd(K) on the right). So
classifying representations up to isomorphism can be rephrased as finding a
normal form for such matrices under these actions.

In particular, the direct sum of two representations corresponds to a diagonal
block matrix, so we should be able to read off the indecomposable summands
from our normal form.

1. Suppose n = 1, so L = K. We are therefore studying matrices in Me×d(K)
together with the usual row and column operations. In this case there are
only three indecomposable representations; describe them.

2. Suppose n = 2, and let L have K-basis 1, x.

We may first put θ into row reduced form. Thus each row is now a vector
of the form (0, 0, 1, a+ bx, 0, c+ dx, e+ fx), where the left-most non-zero
entry is a 1. Next, using K-linear column operations, we can ensure every
other entry is a multiple of x.

We now consider the left-most column containing a non-zero multiple of
x, say in column j. (Note that every element in this column is a multiple
of x.) Rescaling the column, we may assume that the lowest non-zero
entry in this column is precisely x, say in row i. Then by using K-linear
row operations, we can make every other entry in this column zero, at the
expense of introducing scalars from K in column i and rows above i coming
from the pivot element. We can remove these, however by applying K-
linear column operations, using the pivots from the rows above i. Finally,
by applying K-linear column operations, we can now remove all other
entries in row i.
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For example, for a, b, c ∈ K, we have1 0 0 ax ∗
1 0 bx ∗

1 x cx

 
1 0 −a 0 ∗

1 −b 0 ∗
1 x cx

 
1 0 0 0 ∗

1 0 0 ∗
1 x 0


where a, b ∈ K.

Continuing in this way, we may assume that the matrix is now in row
reduced form, and that each column contains at most one non-zero entry,
which is either a 1 or an x. Finally, by rearranging the columns, we can
write our matrix as a direct sum of matrices of the form (1, x) or (1), or
the trivial matrices of size 0× 1 and 1× 0.

In other words, we deduce that every representation is isomorphic to a
direct sum of copies of the four representations

L← 0, L
1←− K, L

(1,x)←−−− K2, 0← K.

Note that the first and last are simple, the first two are projective, and
the last two are injective. Also, the second corresponds to the canonical
embedding L ←↩ K, whereas the third corresponds to the identification
L
∼←− K2. Their endomorphism algebras are, respectively, L, K, L, K.

Finally, their images in the Grothendieck group Z2, with basis e1 = [L←
0] and e2 = [0← K] are, respectively,

(1, 0), (1, 1), (1, 2), (0, 1).

3. Now suppose that n = 3.

(a) Let U, V ⊂ L be two K-vector subspaces of dimension two. Prove
that there exists λ ∈ L such that λU = V .

Hint. Assume first that U has K-basis 1, a and V has K-basis 1, b.
Then U = V if and only if 1, a, b are linearly dependent. Otherwise,
1, a, b form a K-basis for L, so we can write ab = p+qa+rb for some
p, q, r ∈ K. Now find λ such that λU = V . What about the general
case?

Deduce from this that if C and C ′ are K-vector space complements of
K in L, then the representations L←↩ C and L←↩ C ′ are isomorphic.

(b) Let 1, a, b be a K-basis for L, and let Ma,b be the representation

L2 θ←− K3 where θ =
(
1 0 b
0 1 a

)
. Show that all such representations are

isomorphic.

Hint. As above we can change the second row to (0, 1, d), at the cost
of making the first row (1, x, y) for some x, y ∈ L. Subtract a suitable
amount of the second row to get (1, 0, c′). Now explain how to finish
the proof.

We can characterise this as L2 ←↩ U for some K-vector subspace U
of L2 of dimension three, which is not an L-vector subspace.

(c) In fact, these two representations, together with the two simples L←
0 and 0← K, the non-simple projective L

1←− K and the non-simple
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injective L
∼←− K3, are the only indecomposables up to isomorphism.

Thus we have the six indecomposables

L← 0, L←↩ K, L2 ←↩ U L←↩ C, L
∼←− K3, 0← K,

where the first and last are simple, the first two are projective, and
the last two are injective.

Their endomorphism algebras are, respectively, L, K, L, K, L, K.
Their images in the Grothendieck are, respectively,

(1, 0), (1, 1), (2, 3), (1, 2), (1, 3), (0, 1).

4. Suppose n = 4. Can you describe the isomorphism classes of indecom-
posable representations of type (L,K2; θ)? What is the connection to the
Möbius transformation? Can you prove that there are infinitely many
classes, when K is an infinite field?
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