Non-commutative Algebra, SS 2019

Lectures: W. Crawley-Boevey Exercises: A. Hubery

Exercises 1

1. Let K be a field and R a K-algebra.

them as a subalgebra of $\mathbb{M}_4(\mathbb{R})$.

- (a) Assume that d := dim_K R is finite. Show that there is an injective K-algebra homomorphism End_R(R) → End_K(R) ≅ M_d(K).
 Since R ≅ End_R(R)^{op} and M_d(K)^{op} ≅ M_d(K), this shows that every finite dimensional K-algebra can be realised as a subalgebra of a matrix algebra. It is analogous to the result that every finite group G can be realised as a subgroup of the symmetric group S_n for n = |G|.
 Apply this result to the quaternions H as an R-algebra, and hence realise
- (b) More generally, if $S \leq R$ is a subalgebra, then there is an injective K-algebra homomorphism $\operatorname{End}_R(R) \to \operatorname{End}_S(R)$. Apply this to the subalgebra $\mathbb{C} \leq \mathbb{H}$ with \mathbb{R} -basis $\{1, i\}$, and hence realise \mathbb{H} as an \mathbb{R} -subalgebra of $\mathbb{M}_2(\mathbb{C})$.

Hint: as left \mathbb{C} -modules we have $\mathbb{H} \cong \mathbb{C}^2$ with basis $\{1, j\}$.

- 2. Let G be a finite group, and K a field of characteristic not dividing |G|.
 - (a) Show that the following element of KG is an idempotent

$$e := \frac{1}{|G|} \sum_{g \in G} g.$$

(b) Let V, W be KG-modules, and $f: V \to W$ a K-linear map. Show that the following map is a KG-module homomorphism

$$\phi(f): v \mapsto \frac{1}{|G|} \sum_{g \in G} gf(g^{-1}v).$$

- (c) Let $U \leq V$ be KG-modules. As K-vector spaces we can write $V = U \oplus U'$, and hence there exists an idempotent K-linear endomorphism f of V with image U. Show that the KG-linear map $\phi(f)$ is again idempotent with image U. Thus we can write $V = U \oplus U''$ as KG-modules, and hence every KG-module is semisimple.
- 3. Let K be a field, and V a K-vector space. We know that K[x]-module structures on V are in bijection with K-algebra homomorphisms $K[x] \to \operatorname{End}_K(V)$, which in turn are in bijection with (set-theoretic) maps $\{x\} \to \operatorname{End}_K(V)$. In other words, we can regard a K[x]-module as a pair (V, T) consisting of a K-vector space V together with a K-linear endomorphism T of V, in which case $x^n \cdot v :=$ $T^n(v)$ for all $v \in V$.

- (a) Describe the space of K[x]-module homomorphisms from (V, T) to (W, U) as a subspace of $\operatorname{Hom}_{K}(V, W)$.
- (b) Show that there exists a short exact sequence of K[x]-modules

$$0 \to (K,0) \to (K^2,T) \to (K,0) \to 0$$
, where $T = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$.

Is this sequence split?

- (c) Given a K[x]-module (V, T) and an element $\lambda \in K$, show that the eigenspace $\operatorname{Ker}(T \lambda) \leq V$ is a semisimple K[x]-submodule of (V, T).
- (d) Show that for *n* sufficiently large there exists a decomposition $(V,T) = \text{Ker}(T-\lambda)^n \oplus C$ as K[x]-modules.

Hint: write the minimal polynomial of T as $m(t) = (t - \lambda)^n f(t)$ such that $f(\lambda) \neq 0$, so $(t - \lambda)$ and f(t) are coprime. It follows that there exists some polynomials $a(t), b(t) \in K[t]$ such that $a(t)(t - \lambda)^n + b(t)f(t) = 1$. Set $\theta := b(T)f(T) \in \operatorname{End}_K(V)$. Show that θ is a K[x]-module homomorphism, that it is idempotent, and that it has image $\operatorname{Ker}(T - \lambda)^n$.

- 4. Consider \mathbb{Q} as a \mathbb{Z} -module.
 - (a) Prove that \mathbb{Q} is not finitely generated as a \mathbb{Z} -module.
 - (b) Prove that \mathbb{Q} is not free as a \mathbb{Z} -module.
 - (c) Show that every short exact sequence of \mathbb{Z} -modules $0 \to \mathbb{Q} \xrightarrow{f} M \to N \to 0$ splits.

Hint: consider pairs (L, r) consisting of a submodule $L \leq M$ containing \mathbb{Q} and a module homomorphism $r: L \to \mathbb{Q}$ with $rf = 1_{\mathbb{Q}}$. This is a poset via $(L, r) \leq (L', r')$ provided $L \leq L'$ and $r = r'|_L$, the restriction of R' to L. Thus by Zorn's Lemma there exists a maximal element (L, r). Now prove that L = M.

To be handed in by 18th April.