Non-commutative Algebra, SS 2019

Lectures: W. Crawley-Boevey Exercises: A. Hubery

Exercises 10

- 1. Some counter-examples.
 - (a) Give an example of a *non-split* short exact sequence $0 \to X \to Y \to Z \to 0$ in an abelian category such that $Y \cong X \oplus Z$.
 - (b) Give an example of a ring R such that J(R) is a non-zero idempotent ideal.
- 2. Consider the ring $R := \mathbb{Z}[\sqrt{-5}]$ consisting of all complex numbers of the form $x + y\sqrt{-5}$ with $x, y \in \mathbb{Z}$. Let $I = (2, 1 + \sqrt{-5})$ be the ideal of R generated by 2 and $1 + \sqrt{-5}$.
 - (a) Show that I is not principal.
 - (b) Use (a), together with the fact that R is a domain, to conclude that I is neither free, nor a summand of R.
 - (c) Consider the surjective homomorphism

 $\pi \colon R^2 \to I, \quad (1,0) \mapsto 2, \quad (0,1) \mapsto 1 + \sqrt{-5}.$

Construct a section σ for this map, and hence deduce that I is projective.

A ring is called hereditary if every ideal is projective. Examples include path algebras of quivers over fields. A commutative domain is hereditary if and only if it is a Dedekind domain. So, in a Dedekind domain, any non-principal ideal is projective but not free.

3. Consider the quiver \bar{Q} ,

$$\bar{Q}$$
: 1 $\stackrel{a}{\xleftarrow{a^*}}$ 2 $\stackrel{b}{\xleftarrow{b^*}}$ 3

Given $\lambda = (\lambda_1, \lambda_2, \lambda_3) \in \mathbb{C}^3$, the deformed preprojective algebra Π^{λ} is the quotient of $\mathbb{C}\bar{Q}$ by the relations

$$-a^*a = \lambda_1, \quad aa^* - b^*b = \lambda_2, \quad bb^* = \lambda_3.$$

Assume $\lambda_2 \neq 0$, and consider a Π^{λ} -representation

$$X \colon \quad X_1 \xleftarrow{X_a}{X_{a^*}} X_2 \xleftarrow{X_b}{X_{b^*}} X_3$$

(a) Set

$$\alpha := \begin{pmatrix} X_{a^*} \\ -X_b \end{pmatrix} \colon X_2 \to X_1 \oplus X_3 \quad \text{and} \quad \beta := \frac{1}{\lambda_2} (X_a, X_{b^*}) \colon X_1 \oplus X_3 \to X_2.$$

Compute $\beta \alpha$, and hence deduce that $\alpha \beta$ is an idempotent endomorphism of $X_1 \oplus X_3$.

(b) Now consider the \bar{Q} -representation

$$Y \colon \quad Y_1 \xrightarrow{Y_a} Y_2 \xrightarrow{Y_b} Y_3$$

where $Y_1 = X_1$, $Y_2 := \text{Im}(1 - \alpha\beta)$ and $Y_3 = X_3$, with maps

$$Y_a := \lambda_2 (1 - \alpha \beta) \iota_1, \quad Y_{a^*} := -\pi_1, \quad Y_b := \pi_3, \quad Y_{b^*} := \lambda_2 (1 - \alpha \beta) \iota_3.$$

Here, ι_i and π_i are the usual inclusions and projections associated to the direct sum $X_1 \oplus X_3$.

Show that Y is a Π^{μ} -representation, for $\mu = (\lambda_1 + \lambda_2, -\lambda_2, \lambda_2 + \lambda_3)$.

- (c) Show that $X \mapsto Y$ induces a functor $F \colon \Pi^{\lambda}$ -Mod $\to \Pi^{\mu}$ -Mod.
- (d) The analogous construction starting from a Π^{μ} -representation yields a functor $G: \Pi^{\mu}$ -Mod $\rightarrow \Pi^{\lambda}$ -Mod. Prove that $GF \cong$ id. Analogously, $FG \cong$ id, so that Π^{λ} -Mod $\cong \Pi^{\mu}$ -Mod. In other words, Π^{λ} and Π^{μ} are Morita equivalent.
- 4. Let \mathcal{J} and \mathcal{C} be categories, with \mathcal{J} small.
 - (a) Show that the hom functor preserves limits. In other words, given a functor F: J → C and an object X ∈ C, we have a functor Hom_C(X, F): J → Set. Show that, if lim F ∈ C exists, then we have a natural isomoprhism Hom_C(X, lim F) ≅ lim Hom_C(X, F).
 Since the colimit of G: J → C is the limit of G^{op}: J^{op} → C^{op}, the dual
 - (b) Prove that colimits commute with tensor products (in module categories). In other words, given a functor $G: \mathcal{J} \to R$ -Mod and a bimodule ${}_{S}M_{R}$, we have a functor $M \otimes_{R} G: \mathcal{J} \to S$ -Mod. If colim $G \in R$ -Mod exists, then colim $(M \otimes_{R} G) \in S$ -Mod exists, and we have a natural isomorphism $M \otimes_{R} \operatorname{colim} G \cong \operatorname{colim}(M \otimes_{R} G)$.

Hint: use the tensor-hom adjointness, together with (a).

statement is that $\operatorname{Hom}_{\mathcal{C}}(\operatorname{colim} G, Y) \cong \lim \operatorname{Hom}_{\mathcal{C}}(G, Y).$

(c) Give an example to show that limits do not commute with tensor products. Hint: consider $R = S = \mathbb{Z}$, $M = \mathbb{Q}$, and the functor $\mathbb{N}^{\text{op}} \to \mathbf{Ab}$, $n \mapsto \mathbb{Z}/(p^n)$ for some fixed prime p.

To be handed in by 28th June.