Non-commutative Algebra, SS 2019

Lectures: W. Crawley-Boevey Exercises: A. Hubery

Exercises 11

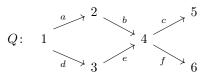
- 1. Some injective envelopes.
 - (a) Let $\mathbb{Z}M$ be a torsion-free abelian group, so $0 \neq x \in M$ and nx = 0 implies n = 0. Show that $M \to \mathbb{Q} \otimes_{\mathbb{Z}} M$ is an injective envelope.
 - (b) More generally, let R be a left Noetherian domain (so 0 ≠ b ∈ R and ab = 0 implies a = 0), and let _RM be a torsion-free R-module (so 0 ≠ x ∈ M and ax = 0 implies a = 0). Show that M → R_S ⊗_RM is an injective envelope, where S = R {0}.
 Hint: Let I ≤ R be a left ideal, and consider f: I → R. If 0 ≠ x ∈ I, we

Hint: Let $I \leq R$ be a left ideal, and consider $f: I \to R$. If $0 \neq x \in I$, we can write $f(x) = xm_x$ for some $m_x \in S^{-1}M$. Show that $m_x = m_y$ for all $x, y \in I$.

2. Injective envelopes as weak initial or terminal objects.

Let R be a ring and M an R-module. We will consider pairs (X, x) such that X is an R-module and $x: M \rightarrow X$ is an injective R-module homomorphism. We say that (X, x) is essential provided x is an essential extension, and say that (X, x) is injective provided X is an injective R-module. Prove that the following are equivalent.

- (a) (I, i) is an injective envelope of M.
- (b) (I, i) is essential, and for any other essential (X, x), there exists an injective map $f: X \to I$ with fx = i.
- (c) (I, i) is injective, and for any other injective (X, x), there exists an injective map $f: I \to X$ such that fi = x.
- 3. Consider the algebra A := KQ/I for the quiver



and admissible ideal I = (ba - ed, cb, fe).

- (a) Compute the indecomposable projectives P[i] and their radicals.
- (b) Compute the indecomposable injectives I[i] and their quotients I[i]/S[i].
- (c) Compute the minimal projective resolutions of the simple modules.
- (d) Compute the minimal injective resolutions of the projective modules.

A minimal projective resolution of a module X is an exact sequence

$$\cdots \to P_2 \xrightarrow{d_2} P_1 \xrightarrow{d_1} P_0 \xrightarrow{d_0} X \to 0,$$

such that each $d_i \colon P_i \to \operatorname{Ker}(d_{i-1})$ is a projective cover. Dually, a minimal injective coresolution of X is an exact sequence

$$0 \to X \xrightarrow{d^0} I^0 \xrightarrow{d^1} I^1 \xrightarrow{d^2} I^2 \to \cdots$$

such that each d^i : Im $(d^{i-1}) \to I^i$ is an injective envelope.

4. Colimits of flat modules.

Fix a K-algebra R. Recall that, given a directed system of right R-modules $f_i: M_i \to M_{i+1}$ for $i \ge 1$, its colimit is

$$\operatorname{colim} M_i := \bigoplus_i M_i / U$$

where U is the submodule of $\bigoplus_i M_i$ generated by all $m_i - f_i(m_i)$.

For convenience we define $f_{ji} := f_{j-1} \cdots f_i \colon M_i \to M_j$ for all $j \ge i$, so that $f_{ii} = \operatorname{id}_{M_i}$ and $f_{i+1,i} = f_i$.

- (a) Suppose $R = \mathbb{Z}$, $M_i := \frac{1}{i!}\mathbb{Z} \leq \mathbb{Q}$, and $f_i \colon M_i \to M_{i+1}$ is the usual inclusion map. Show that colim $M_i = \mathbb{Q}$.
- (b) Let (M_i, f_i) be a directed system of right *R*-modules. Show that every element in colim M_i is the image of some $m_j \in M_j$. Show further that if $m_j \in M_j$ is sent to zero in colim M_i , then $f_{kj}(m_j) = 0$ for some $k \ge j$.
- (c) Given $g: X \to Y$, suppose that $\mathrm{id} \otimes g: M_i \otimes_R X \to M_i \otimes_R Y$ is injective for all *i*. Show that the map $\mathrm{id} \otimes g: (\mathrm{colim} M_i) \otimes_R X \to (\mathrm{colim} M_i) \otimes_R Y$ is also injective.
- (d) Deduce that if M_i is flat for all *i*, then colim M_i is again flat. In particular, a directed colimit of projective modules is always flat, but as part (a) showed, it is not necessarily projective.

There is a more general construction of directed colimits using directed posets, not just the natural numbers. In this more general setting, Lazard's Theorem tells us that every flat module is a directed colimit of finitely generated free modules.

To be handed in by 5th July.