Non-commutative Algebra, SS 2019

Lectures: W. Crawley-Boevey Exercises: A. Hubery

Exercises 2

Throughout, K is a field.

- 1. (a) Set $R := K[x_2, x_3, x_4, ...]/(x_2^2, x_3^3, x_4^4, ...)$ and $I := (x_2, x_3, x_4, ...)$, an ideal in R. Show that I is a nil ideal, but is not a nilpotent ideal.
 - (b) Compute the (two-sided) ideal $I \triangleleft \mathbb{M}_2(K)$ generated by the nilpotent element $e^{12} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$.
- 2. Consider the vector space $V := K^{(\mathbb{N})}$, with basis e_1, e_2, e_3, \ldots Let R be the set of those K-linear endomorphisms θ of V such that $\theta(e_i) \in \operatorname{span}\{e_1, \ldots, e_i\}$ and $\theta(e_n) \in \operatorname{span}\{e_n\}$ for almost all n.
 - (a) Show that R is a K-algebra, which we may regard as upper triangular matrices in $\mathbb{M}_{\infty}(K)$ with only finitely many off-diagonal entries.
 - (b) Show that $\theta \in R$ is invertible if and only if all the diagonal entries of θ are invertible.
 - (c) Show that J(R) consists of the strictly upper triangular matrices, so those having zero on the diagonal.
 - (d) Show that J(S) is a nil ideal, but is not a nilpotent ideal.
- 3. Let R be a ring, and M an R-module. We set rad(M) to be the intersection of all maximal submodules. (Note: M may not have any maximal submodules, in which case rad(M) = M.)
 - (a) Show that $M/\operatorname{rad}(M)$ embeds into a product of simple modules, and hence that $J(R)M \subset \operatorname{rad}(M)$.
 - (b) Show that if R/J(R) is semisimple, then rad(M/J(R)M) = 0, and hence that J(R)M = rad(M).
 - (c) Give an example of a ring R and a finitely generated R-module M for which $J(R)M \neq \operatorname{rad}(M)$.

- 4. Let R be a finite dimensional K-algebra. A bilinear form $\langle -, \rangle \colon R \times R \to K$ is associative provided $\langle xy, z \rangle = \langle x, yz \rangle$ for all $x, y, z \in R$.
 - (a) Show that there is a bijection between associative bilinear forms and elements of $\operatorname{Hom}_K(R, K)$, sending $\langle -, \rangle$ to the map $x \mapsto \langle x, 1 \rangle$.
 - (b) Show that R admits a non-degenerate associative bilinear form if and only if there is an isomorphism of (left) R-modules $R \xrightarrow{\sim} \operatorname{Hom}_K(R, K)$. In this case we call R a Frobenius algebra.

Note that the *R*-module structure on $\operatorname{Hom}_K(R, K)$ is given by (rf)(s) := f(sr) for all $r, s \in R$ and $f \in \operatorname{Hom}_K(R, K)$. Also, $\langle -, - \rangle$ is non-degenerate provided $\langle r, - \rangle = 0$ implies r = 0 and $\langle -, s \rangle = 0$ implies s = 0.

- (c) We call R a symmetric algebra provided there exists a non-degenerate associative symmetric bilinear form. Show that $K[x]/(x^n)$ is a symmetric algebra. Show that $K[x,y]/(x^2,y^2)$ is a symmetric algebra. Show that $K[x,y]/(x,y)^2$ is not a Frobenius algebra.
- (d) Let R be a division algebra. Show that, in characteristic zero, the bilinear form arising from the character $R \rightarrow \operatorname{End}_K(R) \xrightarrow{\operatorname{tr}} K$ is non-degenerate, and hence that R is symmetric. In fact, every semisimple algebra is a symmetric algebra.

To be handed in early on 29th April.