Non-commutative Algebra, SS 2019

Lectures: W. Crawley-Boevey Exercises: A. Hubery

Exercises 3

- 1. Let K be a field, $R = \mathbb{M}_n(K)$, and $M = K^n$ with its natural left R-module.
 - (a) Let θ be a K-algebra automorphism of R. Show that the assignment $R \times M \to M$, $(r, m) \mapsto \theta(r)m$, determines a new R-module structure on M. We denote the resulting R-module by $_{\theta}M$.
 - (b) Explain why $M \cong_{\theta} M$ as *R*-modules. (Hint: *R* is a semisimple algebra.)
 - (c) Deduce that there exists $\phi \in \operatorname{Aut}_K(M)$ such that $\theta(r) = \phi r \phi^{-1}$. Thus $\phi \in R$ is a unit, and θ is an inner automorphism. This is a special case of the Noether-Skolem Theorem.
- 2. This exercise shows that tensor products of semisimple algebras need not be semisimple.
 - (a) Show that C ⊗_R C ≅ C × C as R-algebras. Find explicit descriptions of the idempotents in C ⊗_R C corresponding to (1,0) and (0,1) in C × C. This exercise can be generalised: Let K/k be a finite Galois extension with Galois group G. Then K ⊗_k K ≅ K^{|G|}. Hint: Use the Chinese Remainder Theorem. If you want to do the generalisation, you will also need the Primitive Element Theorem.
 - (b) Let K be a field of characteristic p > 0, and suppose $x \in K$ is not a p-th power in K (so is not of the form y^p for some $y \in K$). Set $L := K[t]/(t^p x)$, a field extension of degree p.

Show that $L \otimes_K L$ contains a non-zero element u satisfying $u^p = 0$. Moreover, $L \otimes_K L \cong L[u]/(u^p)$. In particular, $L \otimes_K L$ is not semisimple.

- 3. Let \mathbb{H} be the \mathbb{R} -algebra of quaternions.
 - (a) For $q \in \mathbb{H}$ denote by $\lambda(q), \rho(q) \in \operatorname{End}_{\mathbb{R}}(\mathbb{H})$ left and right multiplication by q. Show that there is an isomorphism of \mathbb{R} -algebras

$$\mathbb{H} \otimes_{\mathbb{R}} \mathbb{H}^{\mathrm{op}} \xrightarrow{\sim} \mathrm{End}_{\mathbb{R}}(\mathbb{H}), \quad q \otimes q' \mapsto \lambda(q)\rho(q').$$

(b) Recall that \mathbb{H} is a left \mathbb{C} -module with basis $\{1, j\}$, and we have an injective \mathbb{R} -algebra homomorphism

$$\mathbb{H} \to \mathbb{M}_2(\mathbb{C}), \quad z + wj \mapsto \begin{pmatrix} z & w \\ -\bar{w} & \bar{z} \end{pmatrix}, \quad z, w \in \mathbb{C}.$$

Show that this induces an isomorphism of \mathbb{C} -algebras $\mathbb{H} \otimes_{\mathbb{R}} \mathbb{C} \xrightarrow{\sim} M_2(\mathbb{C})$.

Hint: By dimension arguments it is enough to prove one of injectivity or surjectivity. 4. Let R be a K-algebra, X a right R-module and Y a left R-module. Recall that $X \otimes_R Y$ is defined to be the quotient of the free abelian group F on symbols $x \otimes y$ for $x \in X$ and $y \in Y$, subject to the relations

$$(x + x') \otimes y = x \otimes y + x' \otimes y, \quad x \otimes (y + y') = x \otimes y + x \otimes y'$$

 $(xr) \otimes y = x \otimes (ry) \text{ for all } r \in R.$

- (a) Show that $X \otimes_R Y$ is a K-module. (In particular, you need to check that the action is well-defined.)
- (b) Observe that the map $\iota: X \times Y \to X \otimes_R Y$, $(x, y) \mapsto x \otimes y$, is K-bilinear and R-balanced. Now let Z be any K-module. Prove that the assignment $\theta \mapsto \theta \iota$ induces a bijection between $\operatorname{Hom}_K(X \otimes_R Y, Z)$ and K-bilinear R-balanced maps $X \times Y \to Z$.

Hint: For the surjectivity, suppose we are given a K-bilinear R-balanced map $\phi: X \times Y \to Z$. Construct a linear map $F \to Z$, and deduce that this determines a K-linear map $X \otimes_R Y \to Z$.

- (c) We have shown that the pair $(X \otimes_R Y, \iota)$ satisfies the following universal property:
 - $X \otimes_R Y$ is a K-module, and the map $\iota \colon X \times Y \to X \otimes_R Y$ is K-bilinear and R-balanced.
 - If Z is a K-module and $\phi: X \times Y \to Z$ is K-bilinear and R-balanced, then there exists a unique K-linear map $\theta: X \otimes_R Y \to Z$ satisfying $\phi = \theta \iota$.

Suppose (M, j) also satisfies this universal property. Show that there is a unique K-linear map $\theta \colon X \otimes_R Y \to M$, and that this is necessarily an isomorphism.

To be handed in by 3rd May.