Non-commutative Algebra, SS 2019

Lectures: W. Crawley-Boevey Exercises: A. Hubery

Exercises 6

(

1. Let K be a field with char $K \neq 2$. For $a_1, \ldots, a_n \in K$, let $C_K(a_1, \ldots, a_n)$ be the Clifford algebra with respect to the quadratic form $q(\sum_i \lambda_i x_i) := \sum_i a_i \lambda_i^2$. Thus

$$C_K(a_1,\ldots,a_n) := K\langle x_1,\ldots,x_n\rangle/(x_i^2 - a_i,x_ix_j + x_jx_i).$$

This has dimension 2^n , with basis given by (the images of) the elements $x_{i_1} \cdots x_{i_r}$ for $1 \le i_1 < \cdots < i_r \le n$.

- (a) Show that $C_K(1) \cong K \times K$ and over the real numbers we have $C_{\mathbb{R}}(-1) \cong \mathbb{C}$.
- (b) Show that $C_K(1, a) \cong \mathbb{M}_2(K)$ for all $a \neq 0$. Hint: consider the matrices

$$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \quad \text{and} \quad \begin{pmatrix} 0 & 1 \\ a & 0 \end{pmatrix}.$$

(c) Show that over the real numbers $C_{\mathbb{R}}(1,1,1) \cong \mathbb{M}_2(\mathbb{C})$. Hint: consider the Pauli spin matrices

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

2. Hilbert's Basis Theorem fails if σ is not invertible.

Let R = K[t] be a polynomial ring over a field K, and let σ be the K-algebra endomorphism of R sending $t \mapsto t^2$. We claim that the skew-polynomial ring $R[x;\sigma]$ is neither left nor right Noetherian.

- (a) Consider the left ideal I_n generated by t, tx, \ldots, tx^n . Show that tx^{n+1} is not contained in I_n . Deduce that the left ideal generated by all tx^i for $i \ge 0$ is not finitely generated.
- (b) Consider the right ideal J_n generated by $t^n x^n$. Show that this has K-basis given by the $t^i x^j$ such that $i \equiv n \mod 2^n$ and $j \ge n$. Deduce that the right ideal generated by all $t^n x^n$ with $n \ge 2$ is not finitely generated.
- 3. Skew polynomial rings for inner derivations.

Consider a skew-polynomial ring $R[x; \sigma, \delta]$. Assume that $\delta: R \to {}_{\sigma}R$ is an inner derivation, so there exists $m \in R$ such that $\delta(r) = \sigma(r)m - mr$ for all $r \in R$. Show that $R[x; \sigma, \delta]$ is isomorphic to the skew-polynomial ring $R[y; \sigma]$, via the map $r \mapsto r$ for $r \in R$ and $x \mapsto y - m$.

As a special case, if $\sigma = \mathrm{id}_R$ and δ is an inner derivation, then the skewpolynomial ring $R[x; \delta]$ is isomorphic to an ordinary polynomial ring R[y]. 4. Let R be a ring and S a multiplicative subset satisfying the conditions

left Ore: given $(s,r) \in S \times R$ there exists $(s',r') \in S \times R$ with s'r = r's.

left reversible: given $r \in R$, if rs = 0 for some $s \in S$, then s'r = 0 for some $s' \in S$.

Let M be a left R-module, and define a relation \sim on $S \times M$ via

 $(s,m) \sim (s',m')$ provided there exist $r, r' \in R$ with rm = r'm' and $rs = r's' \in S$.

This is clearly reflexive and symmetric. Here we prove that it is transitive, and hence an equivalence relation. Suppose therefore that

$$(s,m) \sim (s',m') \sim (s'',m'')$$

so that we have $a, a', b', b'' \in R$ such that

$$am=a'm', \quad b'm'=b''m'', \quad as=a's'\in S, \quad b's'=b''s''\in S.$$

We need to find $c, c'' \in R$ such that

$$cm = c''m'', \quad cs = c''s'' \in S. \tag{(†)}$$

- (a) Assume we have found $t, t'' \in R$ such that ta' = t''b' and one of t, t'' lies in S. Use these elements to construct c, c'' satisfying (†).
- (b) Apply the left Ore condition to the pair $(a's', b's') \in S \times R$.
- (c) Now apply the left reversibility condition to your answer to obtain t, t'' as in (1).

To be handed in by 24th May.