Non-commutative Algebra, SS 2019

Lectures: W. Crawley-Boevey Exercises: A. Hubery

Exercises 9

1. We recall the definition of a limit.

Let \mathcal{C} be a category, and Q a finite quiver. Given an object $X \in \mathcal{C}$, there exists a functor $c_X \colon Q \to \mathcal{C}$ such that $c_X(v) = X$ for all vertices $v \in Q$, and $c_X(a) = \operatorname{id}_X$ for all arrows $a \in Q$. If $\theta \colon X \to Y$ is a morphism in \mathcal{C} , then we have a natural transformation $c_{\theta} \colon c_X \Rightarrow c_Y$ such that $c_{\theta}(v) = \theta$ for all vertices v. Thus c determines a functor $\mathcal{C} \to \operatorname{Fun}(Q, \mathcal{C})$.

Given a functor $F: Q \to C$, we have an associated functor $\tilde{F}: C^{\text{op}} \to \text{Set}$ such that $\tilde{F}(X) = \operatorname{Nat}(c_X, F)$, the set of natural transformations $c_X \to F$. If $\theta: X \Rightarrow Y$ in C, then $\tilde{F}(\theta): \operatorname{Nat}(c_Y, F) \to \operatorname{Nat}(c_X, F)$ is given by composition with c_{θ} , so sends a natural transformation $\eta: c_Y \Rightarrow F$ to ηc_{θ} .

We say that F has a limit, denoted lim F, provided \tilde{F} is representable. In other words, there exists a pair (X,ξ) with $X \in \mathcal{C}$ and $\xi \colon c_X \Rightarrow F$ such that, for all other pairs (Y,η) , there exists a unique $\theta \colon Y \to X$ with $\eta = \xi c_{\theta}$.

We say that \mathcal{C} is finitely complete provided that, for each finite quiver Q, every functor $F: Q \to \mathcal{C}$ has a limit.

Prove that the following are equivalent for C.

- (a) \mathcal{C} is finitely complete.
- (b) \mathcal{C} has all finite products and equalisers.
- (c) C has all pullbacks and a terminal object.

Hints. For (b) implies (a), suppose we are given a functor $F: Q \to C$. Set $V := \prod_{v \in Q} F(v)$ and $W := \prod_{a \in Q} F(h(a))$. Show that there are two obvious maps $V \to F(h(a))$, yielding two morphisms $V \to W$. Show that their equaliser is $\lim F$.

For (c) implies (b), show that $X \times Y$ is the pullback of the unique maps $X \to T$ and $Y \to T$, where T is the terminal object, and that the equaliser of $f, g: X \to Y$ is the pullback of the maps $\binom{f}{g}: X \to Y \times Y$ and $\binom{\operatorname{id}_Y}{\operatorname{id}_Y}: Y \to Y \times Y$. 2. Let \mathcal{C} be a K-linear category. Let $X_i \in \mathcal{C}$ and suppose that the coproduct $\coprod_i X_i$ and the product $\prod_i X_i$ both exist. Show that there is a natural map

$$\coprod_i X_i \to \prod_i X_i.$$

- 3. Let \mathcal{C} be an additive category (or just a K-linear category with a zero object).
 - (a) Show that the following are equivalent for a morphism $f: X \to Y$.
 - (i) f is a monomorphism.
 - (ii) $f\theta = 0$ implies $\theta = 0$ for all $\theta \colon X' \to X$.
 - (iii) $\operatorname{Ker}(f) = 0.$

Show further that if f is a kernel for some $g\colon Y\to Z,$ then f is a monomorphism.

(b) Suppose that every morphism in \mathcal{C} has both a kernel and a cokernel. Given $f: X \to Y$ we define $\operatorname{Coim}(f)$ to be the cokernel of $\operatorname{Ker}(f) \to X$, and $\operatorname{Im}(f)$ to be the kernel of $Y \to \operatorname{Coker}(f)$.

Given $X \xrightarrow{f} Y \xrightarrow{g} Z$ with gf = 0, show that f factors uniquely as

$$X \twoheadrightarrow \operatorname{Coim}(f) \to \operatorname{Ker}(g) \rightarrowtail Y,$$

and that g factors uniquely as

$$Y \to \operatorname{Coker}(f) \to \operatorname{Im}(g) \to Z.$$

Show that, as a special case, every $f: X \to Y$ factors uniquely as

$$X \to \operatorname{Coim}(f) \xrightarrow{f} \operatorname{Im}(f) \to Y.$$

(c) Let \mathcal{C} be an additive category in which every morphism has both a kernel and a cokernel (so a pre-abelian category). Show that \mathcal{C} is abelian if and only if, for every $f: X \to Y$, the induced map $\overline{f}: \operatorname{Coim}(f) \to \operatorname{Im}(f)$ is an isomorphism.

Hint. Suppose \mathcal{C} is abelian, and factor f as $X \xrightarrow{e} A \xrightarrow{m} Y$ as an epi followed by a mono. Show that $\operatorname{Ker}(f) = \operatorname{Ker}(e)$, and hence that $A \cong \operatorname{Coim}(f)$.

- 4. Let \mathcal{C} be an abelian category. Given morphisms $X \xrightarrow{f} Y \xrightarrow{g} Z$ with gf = 0, we know from the previous exercise that there are unique maps $\overline{f} \colon \operatorname{Im}(f) \to \operatorname{Ker}(g)$ and $\overline{g} \colon \operatorname{Coker}(f) \to \operatorname{Im}(g)$.
 - (a) Show that \overline{f} is an isomorphism if and only if \overline{g} is an isomorphism. In this case we say that the sequence is exact (at Y).
 - (b) Show that $0 \to X \xrightarrow{f} Y$ is exact if and only if f is a monomorphism.
 - (c) Consider an exact commutative diagram

$$\begin{array}{cccc} X & \stackrel{f}{\longrightarrow} Y & \stackrel{g}{\longrightarrow} Z & \longrightarrow 0 \\ & & & \downarrow^{\xi} & & \downarrow^{\eta} & & \downarrow^{\zeta} \\ 0 & \longrightarrow X' & \stackrel{f'}{\longrightarrow} Y' & \stackrel{g'}{\longrightarrow} Z' \end{array}$$

we wish to construct a connecting homomorphism $\delta \colon \operatorname{Ker}(\zeta) \to \operatorname{Coker}(\xi)$. Form the pullback E of $\operatorname{Ker}(\zeta) \to Z$ and g. From the lectures we know that the kernel K of $E \to \operatorname{Ker}(\zeta)$ is isomorphic to the kernel of g. Construct a map $E \to X'$, and show that the composition $K \to E \to X' \to \operatorname{Coker}(\xi)$ is zero. Deduce that there is a map $\delta \colon \operatorname{Ker}(\zeta) \to \operatorname{Coker}(\xi)$ as claimed.

(d) Consider a diagram with exact rows

Let A be the pushout of f and ξ , and B the pullback of g and ζ . Show that there is a map $\eta: Y \to Y'$ making the diagram commute if and only if there exists a map $\alpha: A \to B$ making the following diagram commute

Show further that in this case α is an isomorphism.

To be handed in by 21st June.