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Exercises 9

1. We recall the definition of a limit.

Let C be a category, and Q a finite quiver. Given an object X ∈ C, there
exists a functor cX : Q → C such that cX(v) = X for all vertices v ∈ Q, and
cX(a) = idX for all arrows a ∈ Q. If θ : X → Y is a morphism in C, then we
have a natural transformation cθ : cX ⇒ cY such that cθ(v) = θ for all vertices
v. Thus c determines a functor C → Fun(Q, C).
Given a functor F : Q → C, we have an associated functor F̃ : Cop → Set
such that F̃ (X) = Nat(cX , F ), the set of natural transformations cX → F . If
θ : X ⇒ Y in C, then F̃ (θ) : Nat(cY , F ) → Nat(cX , F ) is given by composition
with cθ, so sends a natural transformation η : cY ⇒ F to ηcθ.

We say that F has a limit, denoted limF , provided F̃ is representable. In other
words, there exists a pair (X, ξ) with X ∈ C and ξ : cX ⇒ F such that, for all
other pairs (Y, η), there exists a unique θ : Y → X with η = ξcθ.

We say that C is finitely complete provided that, for each finite quiver Q, every
functor F : Q→ C has a limit.

Prove that the following are equivalent for C.

(a) C is finitely complete.

(b) C has all finite products and equalisers.

(c) C has all pullbacks and a terminal object.

Hints. For (b) implies (a), suppose we are given a functor F : Q → C. Set
V :=

∏
v∈Q F (v) and W :=

∏
a∈Q F (h(a)). Show that there are two obvious

maps V → F (h(a)), yielding two morphisms V →W . Show that their equaliser
is limF .

For (c) implies (b), show that X×Y is the pullback of the unique maps X → T
and Y → T , where T is the terminal object, and that the equaliser of f, g : X →
Y is the pullback of the maps

(
f
g

)
: X → Y × Y and

(
idY

idY

)
: Y → Y × Y .



2. Let C be a K-linear category. Let Xi ∈ C and suppose that the coproduct
∐
iXi

and the product
∏
iXi both exist. Show that there is a natural map∐

i

Xi →
∏
i

Xi.

3. Let C be an additive category (or just a K-linear category with a zero object).

(a) Show that the following are equivalent for a morphism f : X → Y .

(i) f is a monomorphism.

(ii) fθ = 0 implies θ = 0 for all θ : X ′ → X.

(iii) Ker(f) = 0.

Show further that if f is a kernel for some g : Y → Z, then f is a monomor-
phism.

(b) Suppose that every morphism in C has both a kernel and a cokernel. Given
f : X → Y we define Coim(f) to be the cokernel of Ker(f)→ X, and Im(f)
to be the kernel of Y → Coker(f).

Given X
f−→ Y

g−→ Z with gf = 0, show that f factors uniquely as

X � Coim(f)→ Ker(g) � Y,

and that g factors uniquely as

Y � Coker(f)→ Im(g) � Z.

Show that, as a special case, every f : X → Y factors uniquely as

X � Coim(f)
f̄−→ Im(f) � Y.

(c) Let C be an additive category in which every morphism has both a kernel
and a cokernel (so a pre-abelian category). Show that C is abelian if and
only if, for every f : X → Y , the induced map f̄ : Coim(f) → Im(f) is an
isomorphism.

Hint. Suppose C is abelian, and factor f as X
e
� A

m
� Y as an epi followed

by a mono. Show that Ker(f) = Ker(e), and hence that A ∼= Coim(f).
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4. Let C be an abelian category. Given morphisms X
f−→ Y

g−→ Z with gf = 0, we
know from the previous exercise that there are unique maps f̄ : Im(f)→ Ker(g)
and ḡ : Coker(f)→ Im(g).

(a) Show that f̄ is an isomorphism if and only if ḡ is an isomorphism. In this
case we say that the sequence is exact (at Y ).

(b) Show that 0→ X
f−→ Y is exact if and only if f is a monomorphism.

(c) Consider an exact commutative diagram

X Y Z 0

0 X ′ Y ′ Z ′

f

ξ

g

η ζ

f ′ g′

we wish to construct a connecting homomorphism δ : Ker(ζ)→ Coker(ξ).

Form the pullback E of Ker(ζ)→ Z and g. From the lectures we know that
the kernel K of E → Ker(ζ) is isomorphic to the kernel of g. Construct a
map E → X ′, and show that the composition K → E → X ′ → Coker(ξ)
is zero. Deduce that there is a map δ : Ker(ζ)→ Coker(ξ) as claimed.

(d) Consider a diagram with exact rows

0 X Y Z 0

0 X ′ Y ′ Z ′ 0

f

ξ

g

ζ

f ′ g′

Let A be the pushout of f and ξ, and B the pullback of g and ζ. Show
that there is a map η : Y → Y ′ making the diagram commute if and only
if there exists a map α : A→ B making the following diagram commute

0 X ′ A Z 0

0 X ′ B Z 0

α

Show further that in this case α is an isomorphism.

To be handed in by 21st June.
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