Non-commutative Algebra, SS 2019

Lectures: W. Crawley-Boevey
Exercises: A. Hubery

Exercises 9

. We recall the definition of a limit.

Let C be a category, and @ a finite quiver. Given an object X € C, there
exists a functor cx: @ — C such that cx(v) = X for all vertices v € @, and
cx(a) = idx for all arrows a € Q. If : X — Y is a morphism in C, then we
have a natural transformation cg: cx = cy such that cg(v) = 6 for all vertices
v. Thus ¢ determines a functor C — Fun(Q,C).

Given a functor F: Q — C, we have an associated functor F: C°° — Set
such that F(X) = Nat(cx, F), the set of natural transformations cx — F. If
9: X = Y in C, then F(f): Nat(cy, F) — Nat(cx, F) is given by composition
with cg, so sends a natural transformation 7: cy = F to ncy.

We say that F has a limit, denoted lim F, provided F' is representable. In other
words, there exists a pair (X,¢) with X € C and £: ¢x = F such that, for all

other pairs (Y, n), there exists a unique 0: Y — X with n = £c.

We say that C is finitely complete provided that, for each finite quiver Q, every
functor F': Q — C has a limit.

Prove that the following are equivalent for C.

(a) C is finitely complete.
(b) C has all finite products and equalisers.
(¢) C has all pullbacks and a terminal object.

Hints. For (b) implies (a), suppose we are given a functor F: Q — C. Set
V= [l,eq F(v) and W := [],cq F(h(a)). Show that there are two obvious
maps V' — F(h(a)), yielding two morphisms V' — W. Show that their equaliser
is lim F'.

For (c) implies (b), show that X x Y is the pullback of the unique maps X — T'
and Y — T, where T is the terminal object, and that the equaliser of f,g: X —

Y is the pullback of the maps (f): X =Y x Y and ((§7): Y =Y x Y.



2. Let C be a K-linear category. Let X; € C and suppose that the coproduct [], X;
and the product [[, X; both exist. Show that there is a natural map

3. Let C be an additive category (or just a K-linear category with a zero object).

(a)

Show that the following are equivalent for a morphism f: X — Y.
(i) f is a monomorphism.
(ii) f6 =0 implies # =0 for all §: X' — X.
(iii) Ker(f) =0.
Show further that if f is a kernel for some g: Y — Z, then f is a monomor-
phism.

Suppose that every morphism in C has both a kernel and a cokernel. Given
f: X — Y we define Coim(f) to be the cokernel of Ker(f) — X, and Im(f)
to be the kernel of Y — Coker(f).

Given X LY % Z with gf = 0, show that f factors uniquely as
X — Coim(f) — Ker(g) — Y,

and that g factors uniquely as
Y — Coker(f) — Im(g) — Z.

Show that, as a special case, every f: X — Y factors uniquely as
X — Coim(f) L Im(f) — Y-

Let C be an additive category in which every morphism has both a kernel
and a cokernel (so a pre-abelian category). Show that C is abelian if and
only if, for every f: X — Y, the induced map f: Coim(f) — Im(f) is an
isomorphism.

Hint. Suppose C is abelian, and factor f as X 5 A5 Y asan epi followed
by a mono. Show that Ker(f) = Ker(e), and hence that A = Coim(f).



4. Let C be an abelian category. Given morphisms X Ly Z with gf =0, we
know from the previous exercise that there are unique maps f: Im(f) — Ker(g)
and g: Coker(f) — Im(g).

(a) Show that f is an isomorphism if and only if g is an isomorphism. In this
case we say that the sequence is exact (at V).

(b) Show that 0 — X LoV is exact if and only if f is a monomorphism.

(¢) Consider an exact commutative diagram

X J oy 9,7 0
ek
0 x Ly L

we wish to construct a connecting homomorphism ¢: Ker(¢) — Coker(¢).

Form the pullback F of Ker(¢) — Z and g. From the lectures we know that
the kernel K of E — Ker((¢) is isomorphic to the kernel of g. Construct a
map F — X', and show that the composition K — E — X’ — Coker(&)
is zero. Deduce that there is a map §: Ker(¢{) — Coker(£) as claimed.

(d) Cousider a diagram with exact rows

Xt syv_9,7
e ¢
X/ I’ g VA

Y/

0 0

Let A be the pushout of f and £, and B the pullback of g and (. Show
that there is a map n: ¥ — Y’ making the diagram commute if and only
if there exists a map «: A — B making the following diagram commute

0 X/ A Z 0
I
0 X/ B z 0

Show further that in this case « is an isomorphism.

To be handed in by 21st June.



