Non-commutative Algebra, WS 19/20

Lectures: W. Crawley-Boevey Exercises: A. Hubery

Exercises 3

- 1. Recall that we can compute the Auslander-Reiten translate τ of a module M by taking a (minimal) projective presentation $P_1 \xrightarrow{f} P_0 \to M \to 0$, and then taking the kernel of $\nu(f)$, where $\nu = D \operatorname{Hom}_A(-, A)$ is the Nakayama functor, so $0 \to \tau M \to \nu(P_1) \xrightarrow{\nu(f)} \nu(P_0)$.
 - (a) Let A be the path algebra of the quiver $1 \to 2 \to \cdots \to n$ (of type \mathbb{A}_n). Compute $\tau(S[i])$ for each simple S[i].
 - (b) Let B be the path algebra of the quiver

$$1 \xrightarrow{2}{4} 3$$

Compute $\tau^r(S[1])$ for all r.

2. Let A be the preprojective algebra of type \mathbb{A}_2 , so given by the quiver and relations

$$1 \xrightarrow[b]{a} 2 \xrightarrow[c]{d} 3 \qquad ab - cd, \ ba, \ dc.$$

Compute $\tau^r(S[i])$ for all *i* and *r*.

- 3. A (non-commutative) discrete valuation ring is a non-artinian ring Γ with Jacobson radical $\mathfrak m$ satisfying
 - \bullet every non-zero left ideal is a power of $\mathfrak{m},$ as is every non-zero right ideal, and
 - every left ideal is principal, as is every right right ideal, and Γ is a local domain.
 - (In fact, these two conditions are equivalent.)
 - (a) Let Γ be a DVR. Show that $\Gamma \pi^n = \mathfrak{m}^n = \pi^n \Gamma$ for any $\pi \in \mathfrak{m} \mathfrak{m}^2$, and that $\bigcap_n \mathfrak{m}^n = 0$. Now let $H := H_r(\Gamma)$ be the following subring of $\mathbb{M}_r(\Gamma)$

$$H_r(\Gamma) := \begin{pmatrix} \Gamma & \Gamma & \cdots & \Gamma \\ \mathfrak{m} & \Gamma & \cdots & \Gamma \\ \vdots & \vdots & \ddots & \vdots \\ \mathfrak{m} & \mathfrak{m} & \cdots & \Gamma \end{pmatrix} = \{(a_{ij}) \in \mathbb{M}_r(\Gamma) \mid a_{ij} \in \mathfrak{m} \text{ for all } i > j\}.$$

- (b) Show that each submodule of the indecomposable projective $P[i] = HE_{ii}$ is of the form $(\mathfrak{m}^{a_1}, \ldots, \mathfrak{m}^{a_r})^t$ for some sequence of integers $a_1 \leq \cdots \leq a_r \leq a_1 + 1$ with $a_{i+1} \geq 1$. Deduce that each such submodule is again indecomposable projective.
- (c) Compute J(H) and $J(H)^2$.
- (d) Prove that $H/J(H)^2$ is a Nakayama algebra (each indecomposable projective left module is uniserial, as is each indecomposable projective right module). Deduce that $H/J(H)^n$ is Nakayama for all n. Deduce that the category of finite length H-modules is a uniserial category (every indecomposable finite length module is uniserial).
- (e) Let $I \leq H$ be any left ideal, so that $I \leq \bigoplus_i IE_{ii}$. By considering the projections $I \twoheadrightarrow IE_{ii}$, show that every left ideal is finitely generated projective.

This shows that H is left hereditary and left noetherian. Dually it is right hereditary and right noetherian.

(Conversely, it is a theorem of Michler that every basic semiperfect, hereditary noetherian prime ring is isomorphic to $H_r(\Gamma)$ for some DVR Γ and some r.)

- 4. (a) Let $f: X \to Y$ be a source map. Show that X is indecomposable.
 - (b) Show that every irreducible map is either mono or epi.
 - (c) Let $f: X \to Y$ be an irreducible epi. Show that $\operatorname{Ker}(f)$ is indecomposable.
 - (d) Show that every source map is irreducible.
 - (e) Let Z be indecomposable and not projective. Show that τZ is indecomposable.
 - (f) Let $f: X \to Y$ be a mono source map, giving short exact sequence

$$0 \to X \xrightarrow{f} Y \xrightarrow{g} Z \to 0$$

with Z indecomposable. Show that $X \cong \tau Z$ and that this sequence is an Auslander-Reiten sequence.

Hint. Compare the sequence to the Auslander-Reiten sequence ending at Z, which we know exists.

To be handed in by 11th November.