Non-commutative Algebra, WS 19/20

Lectures: W. Crawley-Boevey Exercises: A. Hubery

Exercises 5

- 1. Some more practice with injectives.
 - (a) Let $f: V \to W$ be a linear map between finite dimensional vector spaces, and $D(f): D(W) \to D(V)$ its dual. Show that, if f is represented by a matrix M with respect to a choice of bases for V and W, then D(f) is represented by the transpose M^t with respect to the dual bases of D(W)and D(V).
 - (b) Let Q be a quiver, and Q^{op} its opposite quiver, so Q^{op} has an arrow \bar{a} for each arrow $a \in Q$. Show that $a \mapsto \bar{a}$ extends to an algebra isomorphism $(kQ)^{\text{op}} \xrightarrow{\sim} kQ^{\text{op}}$.

More generally, show that if A = kQ/I, then $A^{\text{op}} \xrightarrow{\sim} kQ^{\text{op}}/\overline{I}$.

- (c) Let A = kQ/I be finite dimensional, and set $\bar{A} := A^{\text{op}}$. We have the projective left \bar{A} -module $\bar{P}[i] := \bar{A}\bar{e}_i$, which we can draw as a representation of Q^{op} using matrices $M_{\bar{a}}$ indexed by the arrows $\bar{a} \in Q^{\text{op}}$. Show that $D(\bar{P}[i]) = I[i]$ is the corresponding injective left A-module, which we can draw as a representation of Q using the matrices $M_a := M_{\bar{a}}^t$.
- (d) Apply this construction to write down the indecomposable injective I[1] for the algebra A given by

quiver
$$1 \underbrace{\swarrow_{c}}_{c} 2 \underbrace{\searrow_{b}}_{d} 4 \xleftarrow{e} 5$$
 with relation $(ab - cd)e$.

(e) Given an element x ∈ e_iAe_j, we obtain a homomorphism f_x: P[i] → P[j]. Also, x̄ ∈ ē_jĀē_i, so we have a homomorphism f̄_{x̄}: P̄[j] → P̄[i], and thus a homomorphism D(f̄_{x̄}): I[i] → I[j].
Show that, under the canonical isomorphisms Hom_A(P[i], A) ≅ P̄[i] of left

A-modules, the map $\operatorname{Hom}_A(f_x, A)$ corresponds to $\overline{f}_{\overline{x}}$, and hence that the Nakayama functor acts as $\nu(f_x) = D(\overline{f}_{\overline{x}})$.

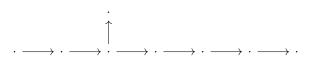
(f) Take the algebra A as in (d), and apply this to compute $\tau(M)$ for the A-module M given by

$$k \underbrace{\stackrel{\lambda}{\overbrace{}}_{1}}_{k} \underbrace{\stackrel{k}{\overbrace{}}_{1}}_{k} \underbrace{\stackrel{1}{\swarrow}_{1}}_{k} \underbrace{\longleftarrow}_{k} 0 \qquad \lambda \in k.$$

2. Write out a full proof, giving all the details, of the theorem in Section 1.6 showing that every indecomposable module over a Nakayama algebra is uniserial.

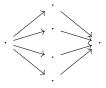
Give an example of a Nakayama algebra A and indecomposable projectiveinjective P with socle S such that (i) SA = S (ii) $SA \neq S$.

3. Consider the following quiver Q (of type \mathbb{E}_8)



and let I be the ideal in kQ generated by all paths of length 3. Knit the Auslander-Reiten quiver of kQ/I.

4. Consider the following quiver



with relations such that $r = p + \lambda q$ and $s = p + \mu q$, where p, q, r, s are the four paths from left to right, and $\lambda, \mu \in k$.

Explain why we can knit a preprojective component C of the Auslander-Reiten quiver containing all but one of the indecomposable projective modules.

To be handed in by 25th November.