Non-commutative Algebra, WS 19/20

Lectures: W. Crawley-Boevey Exercises: A. Hubery

Exercises 8

- 1. Let A be a finite dimensional K-algebra. We want to show that the assignment $\mathbb{Y}: X \mapsto \operatorname{Hom}_A(-, X)$ induces an equivalence of categories between A-mod and the category $\operatorname{Fun}((\operatorname{proj} A)^{\operatorname{op}}, K\operatorname{-mod})$ of contravariant additive functors from $\operatorname{proj} A$ to the category K-mod of finite dimensional K-vector spaces.
 - (a) Show that \mathbb{Y} determines a fully faithful functor

 $A \operatorname{-mod} \to \operatorname{Fun}((\operatorname{proj} A)^{\operatorname{op}}, K \operatorname{-mod}).$

(b) Let $h\in \operatorname{Fun}((\operatorname{proj} A)^{\operatorname{op}},K\operatorname{-mod}).$ Show that there is a $K\operatorname{-algebra}$ homomorphism

$$A \xrightarrow{\sim} \operatorname{End}_A(A)^{\operatorname{op}} \to \operatorname{End}_K(h(A)), \quad a \mapsto h(\rho_a),$$

where $\rho_a \in \text{End}_A(A)$ is right multiplication by a. This endows h(A) with the structure of a left A-module.

Show further that this extends to a functor

 $\operatorname{ev}_A \colon \operatorname{Fun}((\operatorname{proj} A)^{\operatorname{op}}, K\operatorname{-mod}) \to A\operatorname{-mod}.$

(c) By Yoneda's Lemma we have an isomorphism between elements of h(P)and natural transformations $\operatorname{Hom}_A(-, P) \Rightarrow h$, say sending $x \in h(P)$ to η_x .

Show that the assignment $h(P) \to \operatorname{Hom}_A(P, h(A))$ sending x to the homomorphism $P \xrightarrow{\sim} \operatorname{Hom}_A(A, P) \xrightarrow{\eta_{x,A}} h(A)$ yields a natural transformation $h \Rightarrow \operatorname{Hom}_A(-, h(A)).$

Show further that this is an isomorphism at A, so is an isomorphism on all of proj A, using the same hint as from 3(b).

This finishes the proof.

Let Q be a quiver. To define a contravariant functor $h: \operatorname{proj} KQ \to K$ -mod, we first need to specify a vector space $h_i := h(P[i])$ for each vertex i of Q. Next, $\operatorname{Hom}_{KQ}(P[j], P[i])$ has basis the set of paths from i to j, each of which is a product of arrows. Since h preserves composition of homomorphisms, it is enough to specify a linear map $h_a: h_i \to h_j$ for each arrow $a: i \to j$. Conversely, every such choice determines a functor. Thus contravariant functors $\operatorname{proj} KQ \to K$ -mod are the same as K-representations of Q, which we know is equivalent to KQ-mod. In general, let A = KQ/I be a quotient of a path algebra, and $h: \operatorname{proj} KQ \to K$ -mod a contravariant functor. Now each element $p \in I$ determines a homomorphism of projective KQ-modules, and it follows that h determines a functor $\operatorname{proj} A \to K$ -mod if and only if h(p) = 0 for all $p \in I$. In other words, we can identify A-mod with the subcategory of those K-representations of Q satisfying the relations I.

2. A faithfully balanced pair (A, M) consists of a finite dimensional algebra A and a faithfully balanced A-module M. Its endomorphism correspondent is the pair (B, M), where $B = \text{End}_A(M)$. Note that $_BM$ will necessarily be faithfully balanced.

Two faithfully balanced pairs (A, M) and (A', M') are equivalent provided there exists an equivalence $\alpha \colon A \operatorname{-mod} \xrightarrow{\sim} A' \operatorname{-mod}$ restricting to an equivalence add $M \cong \operatorname{add} M'$.

We wish to show that equivalent faithfully balanced pairs have equivalent endomorphism correspondents.

- (a) Show that $F := \text{Hom}_A(-, M)$ and $G := \text{Hom}_B(-, M)$ induce antiequivalences between proj A and $\text{add}_B M$, and between proj B and $\text{add}_A M$. In particular, the map θ_X is an isomorphism for all $X \in \text{add}(A \oplus M)$, and η_Y is an isomorphism for all $Y \in \text{add}(B \oplus M)$.
- (b) Let $\alpha': A' \operatorname{-mod} \xrightarrow{\sim} A \operatorname{-mod}$ be an adjoint to α . We know that α induces an equivalence $\beta := F' \alpha G$: proj $B \xrightarrow{\sim}$ proj B', with adjoint $\beta' := F \alpha' G'$. Show that β extends to an equivalence

 $B \operatorname{-mod} \cong \operatorname{Fun}((B \operatorname{-mod})^{\operatorname{op}}, K \operatorname{-mod}) \cong \operatorname{Fun}(B' \operatorname{-mod})^{\operatorname{op}}, K \operatorname{-mod}) \cong B' \operatorname{-mod}$

sending a *B*-module *Y* to the *B'*-module $\operatorname{Hom}_B(F\alpha'(M'), Y)$. Note that the action of *B'* is via the map $B' = \operatorname{End}_{A'}(M') \to \operatorname{End}_A(\alpha'(M'))$ induced by α' .

- (c) Show that the *B*-module $_BM = F(A)$ is sent to $F'(\alpha(A)) \in \operatorname{add}_{B'}M'$.
- (d) Deduce that β restricts to an equivalence add $_BM \cong \operatorname{add}_{B'}M'$.

- 3. Let K be an algebraically closed field, and A a finite dimensional K-algebra. Set $B := \operatorname{End}_A(M)$ for some $M \in A$ -mod. Assume that $M = M_1 \oplus \cdots \oplus M_n$ with $\operatorname{End}_A(M_i) = K$ for all i, and $M_i \not\equiv M_j$ for all $i \neq j$. Recall that $\operatorname{Hom}_A(-, M)$ induces an equivalence add $M \cong (\operatorname{proj} B)^{\operatorname{op}}$.
 - (a) Show that $B \cong K\Gamma/J$ for some finite quiver Γ having *n*-vertices and some admissible ideal J. Show further that $J(B) = \bigoplus_{i \neq j} \operatorname{Hom}_A(M_i, M_j)$.
 - (b) Show that the module ${}_{B}M$, when drawn as a quiver representation for Γ , has vector space M_j at vertex j. Moreover, if an arrow $a: i \to j$ in Γ is represented by a homomorphism $\hat{a} \in \operatorname{Hom}_A(M_i, M_j)$, then the linear map at a is precisely \hat{a} .
 - (c) Let A = KQ for the quiver $Q: 1 \to 2 \to 3$. This has Auslander-Reiten quiver

For the module $M = S[1] \oplus P[2] \oplus P[1] \oplus I[2]$ compute $B := \text{End}_A(M) = K\Gamma/J$ and draw $_BM$ as a quiver representation

- (d) Do the same for the module $M' = P[1] \oplus S[2] \oplus I[2] \oplus S[3]$, having endomorphism algebra $B' = K\Gamma'/J'$.
- 4. Let Q and Γ be two finite quivers. We define their Cartesian product $Q \times \Gamma$ to be the quiver with vertices $Q_0 \times \Gamma_0$ and arrows $a_p: (i, p) \to (j, p)$ for $a: i \to j$ in Q_1 , as well as $b_i: (i, p) \to (i, q)$ for $b: p \to q$ in Γ_1 .
 - (a) Show that $KQ \otimes_K K\Gamma$ is isomorphic to $K(Q \times \Gamma)$ modulo the ideal C given by commutative squares, so $a_q b_i - b_j a_p$ for all $a: i \to j$ in Q_1 and $b: p \to q$ in Γ_1 .

Hint. Show first that there is a natural surjective algebra homomorphism $K(Q \times \Gamma) \to KQ \otimes_K K\Gamma$ (though a better approach would be to use the relevant universal properties).

- (b) If A = KQ/I and B = KQ/J, show that $A \otimes_K B$ is isomorphic to the quotient of $KQ \otimes_K \Gamma$ modulo the ideal $I \otimes K\Gamma + KQ \otimes J$.
- (c) For the setting of Q3 (c), write the $A \otimes_K B$ -module M as a quiver representation for $Q \times \Gamma$.
- (d) Do the same for the setting of Q3 (d), writing the $A \otimes_K B'$ -module M' as a quiver representation for $Q \times \Gamma'$.

To be handed in by 16th December.