Non-commutative Algebra 3, WS 2017

Lectures: W. Crawley-Boevey

Exercises: A. Hubery

Exercises 12

We work over an algebraically closed field K.

- 1. Given a group G, we define its derived subgroup G' to be the subgroup generated by all commutators $[g,h] := ghg^{-1}h^{-1}$.
 - (a) Show that $G' \triangleleft G$ is a normal subgroup, and that G/G' is abelian.
 - (b) Show that any subgroup $G' \leq H \leq G$ is necessarily normal in G.

Iterating this, we set $G^{(0)} := G$, and $G^{(n+1)}$ to be the derived subgroup of $G^{(n)}$, so that $G^{(1)} = G'$. A group is said to be solvable if $G^{(n)}$ is trivial for some n.

- 2. Set $B_n \subset GL_n(K)$ be the set of upper triangular matrices, and $U_n \subset B_n$ the subset consisting of those matrices which are 1 on the diagonal.
 - (a) Show that B_n and U_n are both closed connected subgroups of $GL_n(K)$.
 - (b) Show that $U_n = B'_n$, and that B_n/U_n is isomorphic to the multiplicative group $(K^{\times})^n$.
 - (c) Show that the r-th derived subgroup $U_n^{(r)}$ consists of those matrices having zeros on the first r upper diagonals, so in particular $U_n^{(n-1)}$ is trivial. Hence show that $U_n^{(r)} \triangleleft U_n$ is normal, and for all $0 \le r < n$ the quotient $U_n^{(r)}/U_n^{(r+1)}$ is isomorphic to the additive group K^{n-r} .

This shows that B_n and U_n are both solvable groups. In fact, since $U_n^{(r)}$ equals the subgroup generated by all commutators [u, v] with $u \in U_n$ and $v \in U_n^{(r-1)}$, we see that U_n is even a nilpotent group.

- 3. In this question we consider the derived subgroup G' of a connected algebraic group G.
 - (a) Suppose $U, V \subset G$ are dense open subsets. Show that every element $g \in G$ can be written as g = uv for some $u \in U$ and $v \in V$. In other words, G = UV.
 - Hint. Consider $U \cap gV^{-1}$. Why is this set non-empty?
 - (b) Suppose $H \subset G$ is a dense open subgroup. Show that H = G. Hint. Use the previous part with U = V = H.

(c) Consider

$$\phi_n \colon (G \times G)^n \to G, \quad (g_1, h_1, \dots, g_n, h_n) \mapsto [g_1, h_1] \cdots [g_n, h_n].$$

Show that we have an increasing sequence of closed irreducible subsets

$$\overline{\mathrm{Im}(\phi_1)} \subset \overline{\mathrm{Im}(\phi_2)} \subset \cdots$$

Explain why this sequence must stabilise, so there exists n such that $\overline{\text{Im}(\phi_r)} = \overline{\text{Im}(\phi_n)}$ for all $r \geq n$.

Deduce that $\overline{\mathrm{Im}(\phi_n)}$ is a closed connected subgroup of G, and that $\mathrm{Im}(\Phi_n) \subset G' \subset \overline{\mathrm{Im}(\phi_n)}$.

Use the previous part to deduce that $G' = \overline{\text{Im}(\phi_n)}$ is a closed connected subgroup of G.

If $H \leq G$ is a closed subgroup, then the set of cosets G/H is naturally a space with functions, and is in fact a variety. Moreover the natural map $G \to G/H$ is a morphism of varieties.

In particular, if $N \leq G$ is a closed normal subgroup, then G/N is again an algebraic group, and the natural map $G \to G/N$ is a morphism of algebraic groups.

Finally, if G is affine and $N \lhd G$ is a closed normal subgroup, then the quotient G/N is again affine.

- 4. Consider the group $G = U_2$ acting on K^2 via matrix multiplication.
 - (a) Describe all the orbits of G on K^2 . Hence show that all orbits are closed.
 - (b) Show that the fixed point subalgebra $K[X,Y]^G$ is just K[Y].
 - (c) Show that the induced topology on the quotient K^2/G is the cofinite topology, so the proper closed sets are just the finite sets.

It is possible to show that the space with functions K^2/G is not a variety, and hence this is not a geometric quotient.

To be handed in by 29th January.