Non-commutative Algebra 3, SS 2020

Lectures: W. Crawley-Boevey Exercises: A. Hubery

Exercises 2

There were several open questions involving affine spaces, which we now want to address. Let K be an algebraically closed field. We recall the following form of Hilbert's Nullstellensatz.

Nullstellensatz. Let A be a finitely generated (commutative) K-algebra.

- If $\mathfrak{m} \triangleleft A$ is a maximal ideal, then the natural map $K \rightarrow A/\mathfrak{m}$ is an isomorphism.
- If I ⊲ A is any ideal, then its radical √I = {a ∈ A : aⁿ ∈ I for some n} is the intersection of all maximal ideals containing I, so √I = ∩_{m⊃I} m.
- 1. Let A be a finitely generated, commutative K-algebra. Assume further that A is reduced, so that nil A = 0. Define Spec A to be the set of all maximal ideals of A. In this question we will show how to turn this into a space with functions.
 - (a) Show first that we can regard A as an algebra of functions on Spec A via $a(\mathfrak{m}) := a + \mathfrak{m} \in A/\mathfrak{m} \cong K$, where $a \in A$ and $\mathfrak{m} \in \operatorname{Spec} A$. In other words, show that this induces an injective algebra map from A to the algebra of all functions $\operatorname{Spec} A \to K$.

Note that $a \in \mathfrak{m}$ if and only if $a(\mathfrak{m}) = 0$. In other words, \mathfrak{m} is the kernel of the map $A \to K$, $a \mapsto a(\mathfrak{m})$.

If we now take $\mathcal{B} := \{\emptyset, \operatorname{Spec} A\}$ and $\mathcal{O}'(\operatorname{Spec} A) := A$, then we can equip $\operatorname{Spec} A$ with the structure of a space with functions as in Exercise Sheet 1, Question 4. Moreover, if X is any space with functions, then a map $\theta \colon X \to \operatorname{Spec} A$ is a morphism of spaces with functions if and only if $a\theta \in \mathcal{O}(X)$ for all $a \in A$.

- (b) Let $\theta: X \to \operatorname{Spec} A$ be a morphism of spaces with functions. Show that $a \mapsto a\theta$ is a K-algebra homomorphism $\phi: A \to \mathcal{O}(X)$. Moreover, for each $x \in X$, the maximal ideal $\theta(x) \in \operatorname{Spec} A$ is precisely the kernel of the map $A \to K, a \mapsto \phi(a)(x)$.
- (c) Conversely, given a K-algebra homomorphism $\phi: A \to \mathcal{O}(X)$, show that there is a map $\theta: X \to \operatorname{Spec} A$ sending $x \in X$ to the kernel of $A \to K$, $a \mapsto \phi(a)(x)$. Show that $a\theta = \phi(a) \in \mathcal{O}(X)$. Deduce that θ is a morphism of spaces with functions.
- (d) Show that these two constructions are mutually inverse, so yield a bijection between morphisms $X \to \operatorname{Spec} A$ and K-algebra homomorphisms $A \to \mathcal{O}(X)$.

- 2. Let $\phi: A \to B$ be an algebra homomorphism between two finitely generated, commutative and reduced K-algebras.
 - (a) Show that if $\mathfrak{n} \triangleleft B$ is a maximal ideal, then $\phi^{-1}(\mathfrak{n})$ is a maximal ideal of A.
 - (b) Show that the morphism of spaces with functions θ : Spec $B \to$ Spec A corresponding to ϕ is precisely the map $\theta(\mathfrak{n}) := \phi^{-1}(\mathfrak{n})$ (c.f. the previous exercise, part (c)).
 - (c) Recall that if $I \subset A$, then $V(I) = \{\mathfrak{m} : I \subset \mathfrak{m}\} \subset \operatorname{Spec} A$. Show that $\operatorname{Im}(\theta) \subset V(I)$ if and only if $I \subset \operatorname{Ker}(\phi)$. Deduce that $\overline{\operatorname{Im}(\theta)} = V(\operatorname{Ker}(\phi))$.
 - (d) We say that θ is dense if $\overline{\text{Im}(\theta)} = \text{Spec } A$. Show that θ is dense if and only if ϕ is injective.
- 3. Let A be a finitely generated, commutative and reduced K-algebra, and $I \triangleleft A$ a radical ideal. In this question we want to show that Spec(A/I) is isomorphic to V(I) with its induced structure as a space with functions.
 - (a) Show that A/I is a finitely generated, commutative and reduced K-algebra.
 - (b) Consider the canonical algebra homomorphism $\pi: A \to A/I$. Show that the corresponding morphism of spaces with functions $\theta: \operatorname{Spec}(A/I) \to$ Spec A with image contained in V(I). Using Exercise Sheet 1, Question 3 we deduce θ induces a morphism of spaces with functions $\theta: \operatorname{Spec}(A/I) \to$ V(I).
 - (c) To see that θ is an isomorphism, we need to construct its inverse. Show that the restriction map $A \to \mathcal{O}(V(I))$ induces an algebra homomorphism $A/I \to \mathcal{O}(V(I))$, and hence corresponds to a morphism of spaces with functions $\phi: V(I) \to \operatorname{Spec}(A/I)$. Show further that $\phi(\mathfrak{m}) = \mathfrak{m}/I$ for all maximal ideals $\mathfrak{m} \supset I$, and hence that ϕ and θ are mutually inverse.
 - (d) Give an example of a continuous map $\theta: X \to Y$ between two topological spaces such that θ is bijective but not a homeomorphism.
- 4. Again let A be a finitely generated, commutative and reduced K-algebra. Given $0 \neq a \in A$, we can form the algebra $A_a := A[t]/(1 at)$. In this question we want to show that Spec A_a is isomorphic to $D(a) := \{\mathfrak{m} : a \notin \mathfrak{m}\} \subset \operatorname{Spec} A$, with its induced structure as a space with functions.
 - (a) Show that A_a is a finitely generated, commutative and reduced K-algebra.
 - (b) Consider the canonical algebra map $\pi: A \to A_a$. Show that the corresponding morphism of spaces with functions θ : Spec $A_a \to$ Spec A with image contained in D(a). Using Exercise Sheet 1, Question 3 we deduce θ induces a morphism of spaces with functions θ : Spec $A_a \to D(a)$.
 - (c) Conversely, show that the restriction map $A \to \mathcal{O}(D(a))$ induces an algebra homomorphism $A_a \to \mathcal{O}(D(a))$, and hence corresponds to a morphism of spaces with functions $\phi: D(a) \to \operatorname{Spec} A_a$.
 - (d) Show that ϕ and θ are mutually inverse.

- 5. Let A be a finitely generated, commutative, reduced K-algebra. In this question we want to show that $\mathcal{O}(\operatorname{Spec} A) = A$. In particular, combining this with the previous two exercises yields $\mathcal{O}(D(a)) = A_a$ and $\mathcal{O}(V(I)) = A/I$.
 - (a) Suppose $f \in A$ is zero as a function $D(g) \to K$. Show that fg is zero on all of Spec A, and hence that fg = 0 as elements of A.
 - (b) Take $\theta \in \mathcal{O}(\operatorname{Spec} A)$. Then we can write $\operatorname{Spec} A = \bigcup_{\alpha} D(g'_{\alpha})$ such that $\theta = f'_{\alpha}/g'_{\alpha}$ on $D(g'_{\alpha})$. Set $f_{\alpha} := f'_{\alpha}g'_{\alpha}$ and $g_{\alpha} = (g'_{\alpha})^2$. Show the following.
 - (i) $D(g_{\alpha}) = D(g'_{\alpha}).$
 - (ii) $\theta = f_{\alpha}/g_{\alpha}$ on $D(g_{\alpha})$.
 - (iii) $f_{\alpha}g_{\beta} = f_{\beta}g_{\alpha}$ on all of Spec A, and hence $f_{\alpha}g_{\beta} = f_{\beta}g_{\alpha}$ as elements of A.

Hint. For (iii) we know that $f'_{\alpha}/g'_{\alpha} = f'_{\beta}/g'_{\beta}$ on $D(g'_{\alpha}g'_{\beta})$. Write this in the form $f''/g'_{\alpha}g'_{\beta} = 0$ and use the first part.

- (c) Let I be the ideal generated by the g_{α} . Show that $V(I) = \emptyset$, and hence that I = A. Deduce that we can write $1 = \sum_{\alpha} s_{\alpha} g_{\alpha}$ as a finite sum.
- (d) Set $h := \sum_{\alpha} s_{\alpha} f_{\alpha}$, again a finite sum, so $h \in A$. Show that $hg_{\beta} = f_{\beta}$, so that $h = f_{\beta}/g_{\beta} = \theta$ on $D(g_{\beta})$. Deduce that $\theta = h$ as functions Spec $A \to K$.

To be handed in by 11th May.