Non-commutative Algebra 3, SS 2020

Lectures: W. Crawley-Boevey Exercises: A. Hubery

Exercises 4

We work over an algebraically-closed field K. We define an affine K-algebra to be a finitely generated, commutative and reduced K-algebra.

- 1. Let G be an affine algebraic group (affine group scheme), and set $A = \mathcal{O}(G) = K[G]$.
 - (a) Recall that $\mathcal{O}(G \times G) \cong A \otimes_K A$, where $a \otimes b$ is the map $(g, h) \mapsto a(g)b(h)$. The multiplication $G \times G \to G$, $(g, h) \mapsto gh$, induces an algebra homomorphism $\Delta \colon A \to A \otimes_K A$, $\Delta(a)(g, h) \coloneqq a(gh)$. Show that, as maps $A \to A \otimes_K A \otimes_K A$, we have $(\Delta \otimes \mathrm{id})\Delta = (\mathrm{id} \otimes \Delta)\Delta$.

(b) Recall that Spec $K = \{*\}$ is a single point. Thus the unit $1 \in G$ can

be regarded as a morphism Spec $K \to G$, and as such corresponds to an algebra homomorphism $\varepsilon \colon A \to K$, $\varepsilon(a) = a(1)$. Using the canonical identifications $K \otimes_K A \cong A \cong A \otimes_K K$, show that, as

maps $A \to A$, we have $(\varepsilon \otimes id)\Delta = id = (id \otimes \varepsilon)\Delta$.

- (c) Show that the multiplication $\mu: A \otimes_K A \to A, a \otimes b \mapsto ab$, corresponds to the diagonal embedding $G \to G \times G, g \mapsto (g, g)$.
- (d) Taking inverses gives a map $G \to G$, $g \mapsto g^{-1}$, so corresponds to an algebra homomorphism $S: A \to A$. Show that S is an algebra automorphism satisfying $\mu(S \otimes id)\Delta = \varepsilon = \mu(id \otimes S)\Delta$.
- (e) Consider the map $\tau: G \times G \to G \times G$, $(g, h) \mapsto (h, g)$. This corresponds to an algebra automorphism τ of $A \otimes_K A$. Show that $\tau(a \otimes b) = b \otimes a$. We know that A is a commutative algebra, so $\mu \tau = \mu$. We say that Ais cocommutative provided $\tau \Delta = \Delta$. Show that this is equivalent to the group G being commutative.

(a) says that Δ is a coassociative comultiplication.

⁽b) says that ε is a counit for Δ .

⁽d) says that S is an (invertible) antipode.

This proves that if G is a (commutative) affine algebraic group, then $\mathcal{O}(G)$ is a commutative (and cocommutative) Hopf algebra. In fact, the duality between affine varieties and affine algebras restricts to a duality between affine algebraic groups and affine Hopf algebras, and restricts further to a duality between commutative affine algebraic groups and cocommutative affine Hopf algebras.

2. Consider the affine variety $G = K^{\times} \times K$, together with the action

$$G \times G \to G$$
, $(a,b) \cdot (c,d) := (ac, bc+d)$.

- (a) Show that G is an affine algebraic group.
- (b) Compute $A := \mathcal{O}(G)$.
- (c) Compute the comultiplication $\Delta \colon A \to A \otimes_K A$, corresponding to the group multiplication.
- (d) Compute the antipode $S: A \to A$, corresponding to the inverse map $g \mapsto g^{-1}$ on G.
- 3. Repeat Question 2 for the affine variety $G = \{M \in GL_2(K) : MM^t = 1\}$.
- 4. Consider the action of $G = K^{\times}$ on K^2 given by $g \cdot (x, y) := (gx, g^{-1}y)$.
 - (a) Compute the comodule structure $K[X, Y] \to K[T, T^{-1}, X, Y]$.
 - (b) Show that every morphism $K^2 \to \operatorname{Spec} A$ which is constant on orbits factors uniquely through $\pi \colon K^2 \to K$, $(x, y) \mapsto xy$.
 - (c) Show that π is not a geometric quotient.
- 5. Let an affine algebraic group G act on a variety X in such a way that $\pi: X \to X/G$ is a geometric quotient.
 - (a) Show that if $U \subset X$ is open, then so too is $gU = \{g \cdot u : u \in U\}$ for each $g \in G$.
 - (b) Show that π is an open map, so $U \subset X$ open implies $\pi(U)$ open.
- 6. Let G be an algebraic group. In this question we will simply write G-bundle instead of Zariski-locally trivial principal G-bundle.
 - (a) Let G act on a variety X, and let $\pi: X \to Y$ be a G-bundle. Thus there exists an open cover $Y = \bigcup_i V_i$ and local trivialisations $\phi_i: G \times V_i \xrightarrow{\sim} \pi^{-1}(V_i), \phi_i(gh, v) = g\phi_i(h, v).$ For each i, j set $V_{ij} := V_i \cap V_j$. We then have the automorphism $\phi_j^{-1}\phi_i$ on $G \times V_{ij}$, called a transition function. Show that $\phi_i^{-1}\phi_i$ is of the form
 - (g, v) → (gγ(v), v) for some morphism γ: V_{ij} → G.
 (b) Let π': X' → Y be another G-bundle. A morphism of G-bundles over Y is a morphism θ: X → X' such that θ(g ⋅ x) = gθ(x) and π'θ = π. Show that every such morphism is an isomorphism.

It follows that we have a category of G-bundles over Y, and this category is a groupoid.

- (c) Show that a *G*-bundle $\pi: X \to Y$ is trivial, so isomorphic to $G \times Y \to Y$, $(g, y) \mapsto y$, if and only if π admits a section, so a morphism $\sigma: Y \to X$ such that $\pi \sigma = \operatorname{id}_Y$.
- (d) Let $\pi \colon X \to Y$ be a G-bundle. Given a morphism $\psi \colon Y' \to Y$, we can form the pullback

Show that the map $\pi' \colon X' \to Y'$ is again a *G*-bundle.

- (e) Let $\pi: X \to Y$ be a *G*-bundle. Show that the pullback $X \times_Y X \to X$ is a trivial *G*-bundle.
- 7. Let Q be the quiver $1 \to 2$. We have $Mod(Q, (d, e)) \cong \mathbb{M}_{e \times d}(K)$, the variety of matrices of size $e \times d$.
 - (a) Let $M = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \in \operatorname{Mod}(Q, (2, 2))$ and consider the quiver Grassmannian $\operatorname{Gr}_Q(M, (1, 1)) \subset \mathbb{P}^1 \times \mathbb{P}^1$. Show that the pair of lines $([a, b], [a', b']) \in \mathbb{P}^1 \times \mathbb{P}^1$ corresponds to a submodule of M, so a point of $\operatorname{Gr}_Q(M, (1, 1))$, if and only if the point $(a, 0) \in K^2$ lies on the line [a', b'], which is if and only if ab' = 0.

Note that the corresponding submodule is the image of the injective module homomorphism

$$\begin{array}{ccc} M & & K^2 \xrightarrow{\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}} K^2 \\ \uparrow & & \begin{pmatrix} a \\ b \end{pmatrix} \uparrow & \uparrow \begin{pmatrix} a' \\ b' \end{pmatrix} \\ U & & K \xrightarrow{\lambda} K \end{array}$$

Here λ is the unique map making the diagram commute.

- (b) Recall the Segre embedding, $\mathbb{P}^1 \times \mathbb{P}^1 \cong V'(wz xy) \subset \mathbb{P}^3$, sending the point ([a, b], [a', b']) to [aa', ab', ba', bb']. Show that this induces an isomorphism between $\operatorname{Gr}_Q(M, (1, 1))$ and $V'(x, wz) \subset \mathbb{P}^3$.
- (c) Show that the isomorphism $\mathbb{P}^2 \cong V'(x) \subset \mathbb{P}^3$, $[s, t, u] \mapsto [s, 0, t, u]$, induces an isomorphism $\operatorname{Gr}_Q(M, (1, 1)) \cong V'(su) \subset \mathbb{P}^2$. In other words, we can regard $\operatorname{Gr}_Q(M, (1, 1))$ as the union of the two projective lines V'(s) and V'(u) inside the projective plane \mathbb{P}^2 .
- (d) Show that the submodules corresponding to the projective line V'(s) are those of the form (1.0)

$$\begin{array}{c} K^2 \xrightarrow{\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}} K^2 \\ \begin{pmatrix} 0 \\ 1 \end{pmatrix} \uparrow & \uparrow \begin{pmatrix} a' \\ b' \end{pmatrix} \\ K \xrightarrow{0} K \end{array}$$

(e) Show that the complement, so the submodules corresponding to the open affine $V(u) \cap D(s) = \{[1, t, 0] : t \in K\} \cong \mathbb{A}^1$, are those of the form

$$\begin{array}{c} K^2 \xrightarrow{\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}} K^2 \\ \begin{pmatrix} 1 \\ t \end{pmatrix} \uparrow & \uparrow \begin{pmatrix} 1 \\ 0 \end{pmatrix} \\ K \xrightarrow{1} K \end{array}$$

To be handed in by 1st June.