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Lectures: W. Crawley-Boevey
Exercises: A. Hubery

Exercises 4

We work over an algebraically-closed field K. We define an affine K-algebra to
be a finitely generated, commutative and reduced K-algebra.

1. Let G be an affine algebraic group (affine group scheme), and set A = O(G) =
K[G].

(a) Recall that O(G×G) ∼= A⊗K A, where a⊗ b is the map (g, h) 7→ a(g)b(h).
The multiplication G×G→ G, (g, h) 7→ gh, induces an algebra homomor-
phism ∆: A→ A⊗K A, ∆(a)(g, h) := a(gh).

Show that, as maps A→ A⊗K A⊗K A, we have (∆⊗ id)∆ = (id⊗∆)∆.

(b) Recall that SpecK = {∗} is a single point. Thus the unit 1 ∈ G can
be regarded as a morphism SpecK → G, and as such corresponds to an
algebra homomorphism ε : A→ K, ε(a) = a(1).

Using the canonical identifications K ⊗K A ∼= A ∼= A⊗K K, show that, as
maps A→ A, we have (ε⊗ id)∆ = id = (id⊗ ε)∆.

(c) Show that the multiplication µ : A⊗K A→ A, a⊗ b 7→ ab, corresponds to
the diagonal embedding G→ G×G, g 7→ (g, g).

(d) Taking inverses gives a map G→ G, g 7→ g−1, so corresponds to an algebra
homomorphism S : A → A. Show that S is an algebra automorphism
satisfying µ(S ⊗ id)∆ = ε = µ(id⊗ S)∆.

(e) Consider the map τ : G×G→ G×G, (g, h) 7→ (h, g). This corresponds to
an algebra automorphism τ of A⊗K A. Show that τ(a⊗ b) = b⊗ a.

We know that A is a commutative algebra, so µτ = µ. We say that A
is cocommutative provided τ∆ = ∆. Show that this is equivalent to the
group G being commutative.

(a) says that ∆ is a coassociative comultiplication.
(b) says that ε is a counit for ∆.
(d) says that S is an (invertible) antipode.
This proves that if G is a (commutative) affine algebraic group, then
O(G) is a commutative (and cocommutative) Hopf algebra. In fact, the
duality between affine varieties and affine algebras restricts to a duality
between affine algebraic groups and affine Hopf algebras, and restricts
further to a duality between commutative affine algebraic groups and
cocommutative affine Hopf algebras.



2. Consider the affine variety G = K× ×K, together with the action

G×G→ G, (a, b) · (c, d) := (ac, bc+ d).

(a) Show that G is an affine algebraic group.

(b) Compute A := O(G).

(c) Compute the comultiplication ∆: A→ A⊗KA, corresponding to the group
multiplication.

(d) Compute the antipode S : A → A, corresponding to the inverse map g 7→
g−1 on G.

3. Repeat Question 2 for the affine variety G = {M ∈ GL2(K) : MM t = 1}.

4. Consider the action of G = K× on K2 given by g · (x, y) := (gx, g−1y).

(a) Compute the comodule structure K[X,Y ]→ K[T, T−1, X, Y ].

(b) Show that every morphismK2 → SpecA which is constant on orbits factors
uniquely through π : K2 → K, (x, y) 7→ xy.

(c) Show that π is not a geometric quotient.

5. Let an affine algebraic group G act on a variety X in such a way that π : X →
X/G is a geometric quotient.

(a) Show that if U ⊂ X is open, then so too is gU = {g · u : u ∈ U} for each
g ∈ G.

(b) Show that π is an open map, so U ⊂ X open implies π(U) open.

6. Let G be an algebraic group. In this question we will simply write G-bundle
instead of Zariski-locally trivial principal G-bundle.

(a) Let G act on a variety X, and let π : X → Y be a G-bundle. Thus there
exists an open cover Y =

⋃
i Vi and local trivialisations φi : G × Vi

∼−→
π−1(Vi), φi(gh, v) = gφi(h, v).

For each i, j set Vij := Vi ∩ Vj . We then have the automorphism φ−1j φi
on G × Vij , called a transition function. Show that φ−1j φi is of the form
(g, v) 7→ (gγ(v), v) for some morphism γ : Vij → G.

(b) Let π′ : X ′ → Y be another G-bundle. A morphism of G-bundles over Y
is a morphism θ : X → X ′ such that θ(g · x) = gθ(x) and π′θ = π. Show
that every such morphism is an isomorphism.

It follows that we have a category of G-bundles over Y , and this category
is a groupoid.

(c) Show that a G-bundle π : X → Y is trivial, so isomorphic to G× Y → Y ,
(g, y) 7→ y, if and only if π admits a section, so a morphism σ : Y → X
such that πσ = idY .

(d) Let π : X → Y be a G-bundle. Given a morphism ψ : Y ′ → Y , we can form
the pullback

X ×Y Y ′ X

Y ′ Y

π′ π

ψ

Show that the map π′ : X ′ → Y ′ is again a G-bundle.
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(e) Let π : X → Y be a G-bundle. Show that the pullback X ×Y X → X is a
trivial G-bundle.

7. Let Q be the quiver 1→ 2. We have Mod(Q, (d, e)) ∼= Me×d(K), the variety of
matrices of size e× d.

(a) Let M =
(
1 0
0 0

)
∈ Mod(Q, (2, 2)) and consider the quiver Grassmannian

GrQ(M, (1, 1)) ⊂ P1 × P1. Show that the pair of lines ([a, b], [a′, b′]) ∈
P1 × P1 corresponds to a submodule of M , so a point of GrQ(M, (1, 1)),
if and only if the point (a, 0) ∈ K2 lies on the line [a′, b′], which is if and
only if ab′ = 0.

Note that the corresponding submodule is the image of the injective module
homomorphism

M K2 K2

U K K

(
1 0
0 0

)
(
a
b

)
λ

(
a′

b′

)
Here λ is the unique map making the diagram commute.

(b) Recall the Segre embedding, P1×P1 ∼= V ′(wz−xy) ⊂ P3, sending the point
([a, b], [a′, b′]) to [aa′, ab′, ba′, bb′]. Show that this induces an isomorphism
between GrQ(M, (1, 1)) and V ′(x,wz) ⊂ P3.

(c) Show that the isomorphism P2 ∼= V ′(x) ⊂ P3, [s, t, u] 7→ [s, 0, t, u], induces
an isomorphism GrQ(M, (1, 1)) ∼= V ′(su) ⊂ P2.

In other words, we can regard GrQ(M, (1, 1)) as the union of the two pro-
jective lines V ′(s) and V ′(u) inside the projective plane P2.

(d) Show that the submodules corresponding to the projective line V ′(s) are
those of the form

K2 K2

K K

(
1 0
0 0

)
(
0
1

)
0

(
a′

b′

)
(e) Show that the complement, so the submodules corresponding to the open

affine V (u) ∩D(s) = {[1, t, 0] : t ∈ K} ∼= A1, are those of the form

K2 K2

K K

(
1 0
0 0

)
(
1
t

)
1

(
1
0

)

To be handed in by 1st June.
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