Non-commutative Algebra 3, SS 2020

Lectures: W. Crawley-Boevey Exercises: A. Hubery

Exercises 5

We work over an algebraically-closed field K.

1. Recall the fibre dimension theorem (3.3(E) Main Lemma).

If $\pi: X \to Y$ is a dominant morphism of irreducible varieties, then any irreducible component of a fibre $\pi^{-1}(y)$ has dimension at least dim $X - \dim Y$. Moreover, there is a non-empty open $U \subset Y$ with dim $\pi^{-1}(y) = \dim X - \dim Y$ for all $u \in U$.

- (a) Assume this holds when X and Y are both affine. Show how to deduce the result when just Y is affine. Show how this implies the general case.
- (b) Translate the affine case into a result about commutative algebras.
- 2. Recall that a constructible subset is a finite union of locally closed subsets.
 - (a) Prove that the class of constructible subsets is closed under finite unions, finite intersections, complements, and inverse images. (Chevalley's Theorem says it is also closed under images.)
 - (b) Prove that every constructible set V contains an open dense subset of its closure \bar{V} , so there exists $U \subset V$ with U open and dense in \bar{V} .
 - (c) Suppose a connected algebraic group G acts on a variety X, and let $V \subset X$ be a G-stable constructible subset, so $G \cdot V = V$. Show that we can decompose V into a finite disjoint union of G-stable, irreducible and locally closed subsets.
- 3. We know that if $f: X \to Y$ is a dominant morphism of varieties and X is irreducible, then Y is irreducible. In general the converse fails, so Y irreducible does not imply X irreducible. We prove that the converse holds in three situations.

Let $f: X \to Y$ be a dominant morphism of varieties with Y irreducible. Assume further that each non-empty fibre is irreducible of the same dimension d.

(a) Suppose f is an open map. Prove that X is irreducible. (In fact, all we need for this is that there is a dense set of points $y \in Y$ such that $f^{-1}(y)$ is nonempty and irreducible.)

Hint. Suppose U, V are nonempty disjoint open subsets of X. Show that there exists a point $y \in f(U) \cap f(V)$ such that $f^{-1}(y)$ is irreducible. Obtain a contradiction.

(b) In general, decompose $X = X_1 \cup \cdots \cup X_n$ into its irreducible components. Show that some $f(X_i)$ is dense in Y. Apply the Main Lemma to get that there is some *i* such that $f(X_i)$ is dense, and $f^{-1}(y) \subset X_i$ for all $y \in f(X_i)$. Deduce that if $f(X_i) = Y$, then $X = X_i$ is irreducible.

Hint. If $y \in f(X)$, then $f^{-1}(y) = \bigcup_i (f^{-1}(y) \cap X_i)$, and $f^{-1}(y) \cap X_i$ is the fibre over y of the restriction $f|_{X_i}$.

- (c) Suppose f is a closed map. Prove that X is irreducible.
- (d) Suppose instead that f admist a section s, so a morphism $s: Y \to X$ with $fs = id_Y$. Prove that X is irreducible. Hint. Taking i as in (b), consider the intersection $X_i \cap s(Y)$.

Suppose an algebraic group G acts on a variety X. In general there is no geometric quotient X/G, but we can always form the variety Z := $\{(g,x) \in G \times X : gx = x\}$. We can then define $\dim_G X := \dim Z - \dim G$, and also $\operatorname{top}_G X := \operatorname{top} Z$, which is the number of irreducible components of Z having maximal dimension. By the result above we know that, if there is a geometric quotient, and all points in X have irreducible stabiliser $\operatorname{Stab}_G(x) := \{g \in G : gx = x\}$, then $\dim X/G = \dim_G X$ and $\operatorname{top} X/G = \operatorname{top}_G X$.

- 4. Let $\mathbb{M}_d(K)$ denote the variety of $d \times d$ matrices, and $C_d := \{(M, N) \in \mathbb{M}_d(K)^2 : MN = NM\}$ the commuting variety. We give a different proof of Theorem 3.3 (G).
 - (a) Given $M \in \mathbb{M}_d(K)$, show that $Z_M := \{N \in \mathbb{M}_d(K) : MN = NM\}$ is a subspace, so in particular an irreducible cone. Deduce that the map $M \mapsto \dim Z_M$ is upper semicontinuous. Show further that its minimal value is d, and $\dim Z_M = d$ if and only if $M \in U$, the set of regular matrices (that is, those matrices whose Jordan Normal Form has Jordan blocks with pairwise distinct eigenvalues). In particular, U is open dense in $\mathbb{M}_d(K)$.
 - (b) Set $C'_d := \{(M, N) \in C_d : N \in U\}$ and let $p: C'_d \to \mathbb{M}_d(K)$ be the projection onto the second co-ordinate. Use the previous exercise to show that C'_d is irreducible of dimension $d^2 + d$. Hint: The map n has an obvious section

Hint: The map p has an obvious section.

(c) As in the lectures, given $(M, N) \in C_d$ there exists $R \in U$ commuting with M. Consider the morphism $f \colon \mathbb{A}^1 \to C_d$, $\lambda \mapsto (M, N + \lambda R)$. Then $f^{-1}(C'_d)$ is non-empty open, so $\operatorname{Im}(f) \subset \overline{C'_d}$. Hence C'_d is dense in C_d , so C_d is irreducible of dimension $d^2 + d$.

To be handed in by 8th June.