Non-commutative Algebra 3, SS 2020

Lectures: W. Crawley-Boevey Exercises: A. Hubery

Exercises 6

We work over an algebraically-closed field K.

- 1. Let an algebraic group G act on a variety X, and assume that a geometric quotient $\pi: X \to X/G$ exists.
 - (a) Given a point $x \in X$, we have the action $\rho_x \colon G \to X, g \mapsto gx$. We therefore get maps on tangent spaces

$$\mathfrak{g} \xrightarrow{d(\rho_x)} T_x X \xrightarrow{(d\pi)_x} T_{Gx} X/G.$$

Show that the composition is zero.

(b) Now suppose further that π is Zariski locally trivial. Show that

$$T_{(u,v)}(U \times V) \cong T_u U \times T_v V$$

for any varieties U, V.

Deduce that $(d\pi)_x$ is a cokernel for $d(\rho_x)$, so we have a natural isomorphism

$$T_x X / \operatorname{Im}(d(\rho_x)) \xrightarrow{\sim} T_{Gx} X / G_x$$

- 2. Consider the Grassmannian $\operatorname{Gr}(M,d) = \operatorname{Inj}(K^d,M) / \operatorname{GL}_d(K)$. Let $\theta \in \operatorname{Inj}(K^d,M)$ have image U and set $\rho_{\theta} \colon \operatorname{GL}_d(K) \to \operatorname{Inj}(K^d,M), \ g \mapsto \theta g^{-1}$.
 - (a) Show that $T_{\theta} \operatorname{Inj}(K^d, M) \cong \operatorname{Hom}(U, M)$.
 - (b) Choose a cokernel $\phi: M \to M/U$ for θ . Show that the map

$$T_{\theta} \operatorname{Inj}(K^d, M) \to \operatorname{Hom}(U, M/U), \quad \theta' \mapsto \phi \theta',$$

is a cokernel for the map $d(\rho_{\theta}) \colon \mathbb{M}_d(K) \to T_{\theta} \operatorname{Inj}(K^d, M)$.

- (c) Deduce that $T_U \operatorname{Gr}(M, d) \cong \operatorname{Hom}(U, M/U)$.
- 3. More generally, consider a quiver Grassmannian $\operatorname{Gr}_A(M,d)$, where A is a K-algebra and M is a finite dimensional A-module.

Set $\operatorname{Inj}_A(K^d, M)$ to be those $\theta \in \operatorname{Inj}(K^d, M)$ such that $\phi a_M \theta = 0$ for all $a \in A$, where ϕ is a cokernel for θ , and $a_M \in \operatorname{End}_K(M)$ is the map $m \mapsto a \cdot m$.

- (a) Show that if $\theta \in \text{Inj}_A(K^d, M)$ has image U, then a_M restricts to an endomorphism of U, so that $U \leq M$ is an A-submodule.
- (b) Show that $\operatorname{Gr}_A(M, d) = \operatorname{Inj}_A(M, d) / \operatorname{GL}_d(K)$ is a geometric quotient, and that $\operatorname{Inj}_A(M, d) \to \operatorname{Gr}_A(M, d)$ is Zariski locally trivial.
- (c) Deduce that $T_U \operatorname{Gr}_A(M, d) \cong \operatorname{Hom}_A(U, M/U)$.

- 4. Let A = KQ be the path algebra of a quiver, and M a finite dimensional A-module.
 - (a) Using the long exact sequences for hom, show that if $\operatorname{Ext}^{1}(M, M) = 0$ and $U \leq M$ is a submodule, then $\operatorname{Ext}^{1}(U, M)$, $\operatorname{Ext}^{1}(M, M/U)$ and $\operatorname{Ext}^{1}(U, M/U)$ all vanish.
 - (b) Use the Ringel form to deduce that $\dim \operatorname{Hom}_A(U, M)$ depends only on the dimension vectors of U and M.
 - (c) Deduce that $\operatorname{Gr}_A(M, \underline{d})$ is smooth.
- 5. (a) Consider the surjective morphism $\phi: V(t^2 xt + y) \to \mathbb{A}^2, (x, y, t) \mapsto (x, y)$. For which $q \in V(t^2 - xt + y)$ is the differential $(d\phi)_q$ surjective?
 - (b) Suppose char K = p > 0 and consider the surjective morphism $\theta \colon \mathbb{A}^1 \to \mathbb{A}^1$, $x \mapsto x^p$. Compute the differential $(d\theta)_q$.

To be handed in by 22nd June.