Non-commutative Algebra 3, SS 2020

Lectures: W. Crawley-Boevey Exercises: A. Hubery

Exercises 7

We work over an algebraically-closed field K. Recall the degeneration order $M \leq N$ provided $\mathcal{O}_N \subset \overline{\mathcal{O}}_M$.

1. Let $A = K[x, y]/(x^2, y^2)$, and let M_t be the two-dimensional module where the x and y actions are given by

$$M_t(x) = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$
 and $M_t(y) = \begin{pmatrix} 0 & 0 \\ t & 0 \end{pmatrix}$.

(a) Let $V \subset Mod(A, 4)$ be the subset consisting of the modules $M_s \oplus M_t$, so pairs of matrices

$$\begin{pmatrix} 0 & 0 & & \\ 1 & 0 & & \\ & & 0 & 0 \\ & & 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & & \\ s & 0 & & \\ & & 0 & 0 \\ & & t & 0 \end{pmatrix}, \quad s, t \in K.$$

Consider the morphism

$$\theta \colon \operatorname{GL}_4(K) \times V \to \operatorname{Mod}(A, 4),$$

given by the restriction of the usual $\operatorname{GL}_4(K)$ action on $\operatorname{Mod}(A, 4)$. Show that $\operatorname{GL}_4(K) \times V$ is irreducible and has dimension 18. Show further the generic fibre of θ over the image has dimension 6 (it is the Zariski dimension of $\operatorname{Aut}(M_s \oplus M_t)$, equivalently the K-dimension of $\operatorname{End}(M_s \oplus M_t)$, for $s \neq t$).

Deduce that $\overline{\text{Im}(\theta)}$ is irreducible of dimension 12.

- (b) Show that the orbit closure $\overline{\mathcal{O}}_A$ is irreducible of dimension 12.
- (c) Deduce that there is some s, t such that A does not degenerate to $M_s \oplus M_t$.
- 2. Let A be a finite dimensional algebra, and $\binom{a}{b}: X \to M \oplus X$ a monomorphism.
 - (a) Show that $f_t := b + t \cdot id_X$ is an automorphism of X for all but finitely many $t \in K$.
 - (b) Set $M_t := \operatorname{Coker} \begin{pmatrix} a \\ f_t \end{pmatrix}$. Deduce that $M_t \cong M$ for all but finitely many $t \in K$.
 - (c) Deduce that $M \leq M_0$.

This result, due to Riedtmann, shows that if we have a short exact sequence

 $0 \to X \to M \oplus X \to N \to 0$

then $M \leq N$. Zwara proved the (harder) converse implication.

3. Let $k = \mathbb{F}_q$ be a finite field with q elements. Set \mathcal{N}_d to be the set of all nilpotent matrices in $\mathbb{M}_d(k)$. In this question we want to prove $|\mathcal{N}_d| = q^{d(d-1)}$.

Recall that every matrix $M \in \mathbb{M}_d(K)$ determines a K[T]-module of dimension d, by letting T act as M. Then, given $M, M' \in \mathbb{M}_d(K)$, we have

$$\operatorname{Hom}_{K[T]}(M, M') = \{\theta \in \mathbb{M}_d(K) : \theta M = M'\theta\}.$$

Set $N = J_d(0)$ to be the Jordan block

$$N := \begin{pmatrix} 0 & & & \\ 1 & 0 & & \\ 0 & 1 & \ddots & \\ & & \ddots & 0 \\ & & & 1 & 0 \end{pmatrix}$$

and consider the set \mathcal{S}_d of pairs (A, θ) such that $A \in \mathcal{N}_d$ and $\theta \in \operatorname{Hom}_{K[T]}(N, A)$.

- (a) Show that for every nilpotent matrix A we have dim $\operatorname{Hom}_{K[T]}(N, A) = d$. Thus the projection $\mathcal{S}_d \to \mathcal{N}_d$ on to the first co-ordinate is surjective and every fibre has size q^d . In other words, $|\mathcal{S}_d| = q^d |\mathcal{N}_d|$.
- (b) Now consider the projection $\mathcal{S}_d \to \mathbb{M}_d(K)$ on to the second co-ordinate. Show that the fibre over θ has the same size as the fibre over $g\theta$ for every $g \in \mathrm{GL}_d(K)$. Thus we may assume that θ is in row-reduced form.
- (c) Take $(A, \theta) \in S_d$. Since $\theta N = A\theta$, we know that $N(\text{Ker}(\theta)) \subset \text{Ker}(\theta)$. Assuming θ is in row reduced form, show that we must have $\theta = E_r := \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix}$, where $I_r \in \mathbb{M}_r(K)$ is the identity matrix and $r = \text{rank } \theta$.
- (d) Show that for $\theta = E_r$, the number of nilpotent matrices A for which $\theta N = A\theta$ is $q^{r(d-r)}|\mathcal{N}_{d-r}|$. By induction this equals $q^{(d-1)(d-r)}$ for r > 0.
- (e) Show that the number of θ which have row reduced form E_r is $(q^d 1)(q^d q) \cdots (q^d q^{r-1})$.
- (f) It follows that

$$|\mathcal{S}_d| - |\mathcal{N}_d| = \sum_{r>0} (q^d - 1)(q^d - q) \cdots (q^d - q^{r-1})q^{(d-1)(d-r)}.$$

Prove that this equals $(q^d - 1)q^{d(d-1)}$, and hence that $|\mathcal{N}_d| = q^{d(d-1)}$.

4. Fix a finite dimensional A-module X. We want to show that for each i, the map $Y \mapsto \dim \operatorname{Ext}^{i}(X, Y)$ is upper semi-continuous on $\operatorname{Mod}(A, d)$.

We fix a free resolution of X,

$$\cdots \to A^{r_2} \xrightarrow{f_2} A^{r_1} \xrightarrow{f_1} A^{r_0} \to X \to 0.$$

We also set

$$C(U, V, W) := \{(\theta, \phi) : \phi\theta = 0\} \subset \operatorname{Hom}(U, V) \times \operatorname{Hom}(V, W).$$

In the lectures we saw that the function

$$C(U, V, W) \to \mathbb{Z}, \quad (\theta, \phi) \mapsto \dim(\operatorname{Ker}(\phi) / \operatorname{Im}(\theta))$$

is upper semi-continuous.

(a) We fix a surjective algebra homomorphism $K\langle p_1, \ldots, p_k \rangle \to A$. Then Mod $(A, d) \subset \mathbb{M}_d(K)^k$. Given $a \in A$, lift it to a non-commutative polynomial $\alpha \in K\langle p_1, \ldots, p_k \rangle$. Right multiplication by a gives a map $A \to A$, and thus a map $\rho_a \colon A \to A$. Now let $(y_1, \ldots, y_k) \in Mod(A, d)$, corresponding to a d-dimensional A-

Now let $(y_1, \ldots, y_k) \in \operatorname{Mod}(A, d)$, corresponding to a *d*-dimensional Amodule Y. Show that, under the standard identification $\operatorname{Hom}(A, Y) \cong Y$, the induced homomorphism $\rho_a^* \colon \operatorname{Hom}(A, Y) \to \operatorname{Hom}(A, Y)$ corresponds to the linear map $\alpha(y_1, \ldots, y_k) \colon K^d \to K^d$.

- (b) A homomorphism $f: A^s \to A^r$ corresponds to a matrix $(f_{ij}) \in \mathbb{M}_{r \times s}(A)$. We lift each f_{ij} to a non-commutative polynomial $f_{ij} \in K\langle p_1, \ldots, p_k \rangle$. Show that the induced homomorphism $f_Y^* \colon \operatorname{Hom}(A^r, Y) \to \operatorname{Hom}(A^s, Y)$ corresponds to the block matrix $(f_{ij}(y_1, \ldots, y_k)) \colon (K^d)^r \to (K^d)^s$.
- (c) Deduce that for each i there is a morphism of varieties

$$Mod(A, d) \to C(K^{dr_{i-1}}, K^{dr_i}, K^{dr_{i+1}}), \quad Y \mapsto ((f_i)_Y^*, (f_{i+1})_Y^*).$$

Conclude that the function $Y \mapsto \dim \operatorname{Ext}^{i}(X, Y)$ is upper semi-continuous on $\operatorname{Mod}(A, d)$.

To be handed in by 29th June.