
Non-commutative Algebra 3, SS 2020

Lectures: W. Crawley-Boevey
Exercises: A. Hubery

Exercises 8

We work over an algebraically-closed field K. Recall that we have three partial
orders on Mod(A, d).

Ext M ≤ext N if there exists a sequence M = M0,M1, . . . ,Mn = N and short
exact sequences

0→ L′i →Mi−1 → L′′i → 0, Mi
∼= L′i ⊕ L′′i .

Deg M ≤deg N if N ∈ OM .

Hom M ≤hom N if dim Hom(X,M) ≤ dim Hom(X,N) for all finite dimen-
sional A-modules X.

We saw in the lectures that M ≤ext N implies M ≤deg N implies M ≤hom N .

1. Let A be a (finite dimensional) K-algebra, and M,N ∈ Mod(A, d).

(a) Show that for finite dimensional A-modules M,N we have M ∼= N if
and only if dim Hom(X,M) = dim Hom(X,N) for all finite dimensional
A-modules X.

Hint. We may proceed as follows. Take a basis f1, . . . , fd for Hom(M,N).
Use these to construct a morphism f : M → Nd, and show that the in-
duced map Hom(Nd, N) → Hom(M,N) is onto. Deduce that the map
Hom(Nd,M) → End(M) is onto, and hence that f is a split monomor-
phism. By Krull-Remak-Schmidt, M and N have a common direct sum-
mand. Finish by induction on dimM .

(b) Given a minimal projective presentation Q→ P → X → 0, show that

dim Hom(X,M)−dim Hom(M, τX) = dim Hom(P,M)−dim Hom(Q,M).

Deduce that M ≤hom N if and only if dim Hom(M,X) ≤ dim Hom(N,X)
for all finite dimensional A-modules X.

Hint. We have the (minimal) projective presentation P∨ → Q∨ → TrX →
0 as right A-modules, where P∨ := Hom(P,A). Now tensor with M to
obtain an exact sequence

0→ Hom(X,M)→ Hom(P,M)→ Hom(Q,M)→ DHom(M, τX)→ 0.

The first result is due to Auslander, and generalised by Bongartz. It
shows that the hom order, so M ≤hom N provided dim Hom(X,M) ≤
dim Hom(X,N) for all X, is antisymmetric, and hence a partial order
on the set of isomorphism classes.
The second result is due to Auslander and Reiten, and shows that the
partial orders determined by Hom(X,−) and Hom(−, X) for all X agree.



2. Consider the path algebra KQ, where Q is the quiver 1 3 2

(a) Show that this has Auslander-Reiten quiver

P1 S2

S3 I3

P2 S1

(b) Consider a finite dimensional module M . By the Krull-Remak-Schmidt
Theorem, we can write

M ∼= Sa3 ⊕ P b1 ⊕ P c2 ⊕ Id3 ⊕ Se2 ⊕ S
f
1 ,

and so we can use the shorthand M ↔ (a, b, c, d, e, f).

Compute the dimension vector dimM .

Compute dim Hom(X,M) as X runs through all six indecomposable mod-
ules.

(c) Suppose dimM = dimN with N ↔ (a′, b′, c′, d′, e′, f ′). Write out the
conditions that M ≤hom N , that is, dim Hom(X,M) ≤ dim Hom(X,N)
for all six indecomposable modules X.

(d) Using the three Auslander-Reiten sequences

0→ S3 → P1 ⊕ P2 → I3 → 0

and
0→ P1 → I3 → S2 → 0 0→ P2 → I3 → S1 → 0

show that M ≤hom N implies M ≤ext N .

It is known that ≤hom implies ≤ext when the algebra A is representation
directed. This implies that A is representation finite, and includes all
path algebras of Dynkin quivers.
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3. Consider the algebra A = KQ/I given by the quiver

2
b

1 a

and I is the ideal generated by a2 (c.f. Exercise 6.3 last semester). We know
that this algebra is representation finite, having precisely seven indecomposables
up to isomorphism. Moreover, there are two non-isomorphic indecomposables
of dimension vector 2e1 + e2, namely

X : K

(
1
0

)
K2

(
0 0
1 0

)
and Y : K

(
0
1

)
K2

(
0 0
1 0

)
Compute End(X) and End(Y ). This again shows that X 6∼= Y .

Set

Xt : K

(
t
1

)
K2

(
0 0
1 0

)
Show that Xt

∼= X for all t 6= 0.

This proves that X ≤deg Y . Explain why X 6≤ext Y .

Thus ≤deg does not imply ≤ext for representation finite algebras.

4. We introduce a new partial order by saying M ≤v.ext N (virtual extension)
provided M ⊕X ≤ext N ⊕X for some finite dimensional module X.

(a) Show that M ≤v.ext N implies M ≤hom N .

As in Exercise 7.1, let A = K[x, y]/(x2, y2), and let Mt be the two-dimensional
module where the x and y actions are given by

Mt(x) =

(
0 0
1 0

)
and Mt(y) =

(
0 0
t 0

)
.

We have shown that A 6≤deg Ms ⊕Mt for some s, t.

(b) Show that we have a short exact sequence (in fact an Auslander-Reiten
sequence)

0→ radA→ A⊕ radA/socA→ A/socA→ 0.

(c) Show that for all s, t we have short exact sequences

0→Ms → radA→ K → 0 and 0→ K → A/socA→Mt → 0.

(d) Using that radA/socA ∼= K2 deduce that

A⊕K2 ≤ext Ms ⊕Mt ⊕K2 for all s, t ∈ K,

and hence that A ≤v.ext Ms ⊕Mt.
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This example, due to Carlsson, shows that ≤v.ext does not imply ≤deg.
On the other hand, Zwara showed that if M ≤deg N , then there is a
Riedtamnn sequence 0→ X →M ⊕X → N → 0, and so M ≤v.ext N .

5. A partition λ = (λ1, λ2, . . .) is a sequence of non-negative integers, arranged in
decreasing order. The Young diagram of λ has rows of size λi. For example

λ = (4, 3, 1) has Young diagram

The dual partition λ′ is given by reflection the Young diagram in the diagonal.
For example, the dual of (4, 3, 1) above is

λ′ = (3, 2, 2, 1) having Young diagram

The dominance order on partitions of n is given by λCµ provided λ1+· · ·+λi ≤
µ1 + · · ·+ µi for all i.

(a) Show that λC µ if and only if µ′ C λ′.
Hint. Suppose that µ is obtained from λ by moving a ‘bottom right corner’
block to the next available space to the upper left. For example

×

× λ = µ =

Show that, taking dual partitions, the inverse move is of the same type,
but now from µ′ to λ′. As in the lectures, the covers in the dominance
order are all of this type.

Let λ and µ be two partitions. Their sum λ+ µ is the partition (λ1 + µ1, λ2 +
µ2, . . .); their cup product λ ∪ µ is the partition given by rearranging the parts
of λ and µ into decreasing order.

(b) Show that λ′ + µ′ = (λ ∪ µ)′.

Recall that for each partition λ we have a nilpotent K[t]-module M(λ), having
Jordan blocks of sizes λ′i. In particular, M(d) is semisimple, and M(1d) is
indecomposable.

(c) Show that M(λ)⊕M(µ) ∼= M(λ+ µ).

(d) Let U ≤ M(λ) be a submodule such that dim socU ≤ r. Show that
dimU ≤ λ′1 + · · ·+ λ′r.

Hint. Show that dim soc(U/ socU) ≤ r. Show that M(λ)/ socM(λ) ∼=
M(λ≥2), where λ≥2 = (λ2, λ3, . . .). Now use U/ socU ≤ M(λ≥2) and
induction.
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(e) Deduce that λ′1 + · · · + λ′r is the maximum dimension of a submodule
U ≤M(λ) having dim socU ≤ r.

(f) Suppose now that we have a short exact sequence

0→M(λ)→M(ξ)→M(µ)→ 0.

Use the previous part to deduce that ξ′Cλ′+µ′, and hence that λ∪µC ξ.

Putting this together with the result from the lectures we see that if we
have a short exact sequence

0→M(λ)→M(ξ)→M(µ)→ 0,

then λ ∪ µC ξ C λ+ µ. On the other hand, starting from the pair λ, µ,
there is no simple criterion for determining which ξ arise as the middle
term of such a short exact sequence; it is equivalent to saying the the
Littlewood–Richardson coefficient cξλµ is non-zero, which is a well-known
hard problem.

To be handed in by 6th July.
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