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Lectures: W. Crawley-Boevey
Exercises: A. Hubery

Solutions 1

1. Let X be a tolopological space. Recall that a subset is closed provided
its complement is open.

(a) Show that an arbitrary intersection of closed sets is again closed.

(b) We define the closure of a subset Y ⊂ X to be the intersection over
all closed subsets of X containing Y .

Prove that the following conditions are equivalent for a subset Y ⊂ X.

(i) Y is an open subset of a closed subset of X.

(ii) Y is an open subset of its closure.

(iii) Y is the intersection of an open and a closed subset of X.

Such a subset Y is said to be locally closed.

(c) Now let Y ⊂ X be a locally closed subset. Show that a subset Z ⊂ Y
is locally closed in Y if and only if it is locally closed in X.

Proof. A topological space is given by a set X together with the collection of
open subsets of X, such that ∅ and X are both open, a finite intersection of
open sets is again open, and an arbitrary union of open sets is again open.

(a) A set is closed if its complement is open. Since the complement of an
arbitrary intersection equals the union of the complements,
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it follows that an arbitrary intersection of closed sets is again closed.

(b) (ii) ⇒ (i). Trivial, since the closure of Y is a closed set.

(iii) ⇒ (ii). Write Y = U ∩ C with U open and C closed. Then Y ⊂ C and C
closed implies Ȳ ⊂ C. Since Y ⊂ Ȳ , we have Y ⊂ U ∩ Ȳ ⊂ U ∩ C = Y . Thus
Y = U ∩ Ȳ .

(i) ⇒ (iii). Let Y be open inside the closed subset C. The set C is understood
to have the subspace topology, so its open subsets are U ∩C with U ⊂ X open.
So, Y = U ∩ C for some open U of X.

(c) Write Y = U ∩ C with U open in X, and C closed. Equip Y with the
subspace topology.

If Z ⊂ Y is locally closed in X, then Z = U ′ ∩ C ′ with U ′ open and C ′ closed,
and Z = Z ∩ Y = (U ∩ Y ) ∩ (C ∩ Y ). So Z is locally closed in Y .

Conversely, if Z ⊂ Y is locally closed, then Z = (U ′ ∩Y )∩ (C ′ ∩Y ) for some U ′

open in X and C ′ closed in X. Thus Z = (U ∩ U ′) ∩ (C ∩ C ′) is locally closed
in X.



2. Let θ : Z → Y and φ : Y → X be morphisms of spaces with functions.
Show that the composition φθ : Z → X is a morphism of spaces with
functions.

Proof. A space with functions is a topological space X together with a K-
subalgebra O(U) of the algebra of all functions U → K for each open subset U
of X, satisfying the axioms

• if U =
⋃

i Ui and f : U → K, then f ∈ O(U) if and only if f |Ui ∈ O(Ui)
for all i.

• if f ∈ O(U), then D(f) := {u ∈ U : f(u) 6= 0} is open and 1/f ∈ O(D(f)).

Aside. The first axiom says that we have a sheaf of rings on X, so that X is a
ringed space. Ringed spaces are more general than this, though, since we don’t
require that we have an algebraically closed field K, and we don’t require that
O(U) is a subalgebra of functions U → K.

A morphism φ : Y → X of spaces with functions consists of a continuous map
φ : Y → X such that fφ ∈ OY (φ−1(U)) for all open U ⊂ X and f ∈ OX(U).

Let θ : Z → Y be another morphism of spaces with functions, and consider the
composite φθ : Z → X. Let U ⊂ X be open and f ∈ OX(U). Then φ−1(U) is
open in Y and fφ ∈ OY (φ−1(U). Hence θ−1φ−1(U) is open in Z and fφθ ∈
OZ(θ−1φ−1(U)). The result follows, noting that (φθ)−1(U) = θ−1φ−1(U).

3. Let X be a space with functions, and Y a subset of X with its induced
structure as a space with functions.

(a) Show that the inclusion ι : Y ↪→ X is a morphism of spaces with
functions.

(b) Let Z be any space with functions and θ : Z → Y any map. Show that
θ is a morphism of spaces if and only if ιθ : Z → X is a morphism of
spaces.

In other words, morphisms Z → Y can be thought of as morphisms
Z → X with image contained in Y .

Proof. Let X be a space with functions, and Y a subspace. Then we can give
Y the subspace topology, so the open sets are U ′ := U ∩ Y for U ⊂ X open.
We then define OY (U ′) to be those functions f : U ′ → K such that, for each
y ∈ U ′, there exists an open V ⊂ X with y ∈ V and a g ∈ OX(V ) such that f
and g agree on V ∩ U ′.
Check that this is indeed a space with functions. Let U ′ =

⋃
i U
′
i and f : U ′ →

K, and write fi := f |U ′
i
.

Suppose f ∈ OY (U ′). Then for each y ∈ U ′i there exists an open V ⊂ X with
y ∈ V and g ∈ OX(V ) such that f, g agree on V ∩ U ′. Clearly fi and g agree
on V ∩ U ′i , so fi ∈ OY (U ′i).
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Suppose instead that fi ∈ OY (U ′i) for all i. Take y ∈ U ′. Then y ∈ U ′i for some

i and there exists V̂ ⊂ X open with y ∈ V̂ , and ĝ ∈ OX(V̂ ) such that fi, ĝ agree
on U ′i ∩ V̂ . Since U ′i is open in Y we can write U ′i = Ui ∩ Y for some Ui ⊂ X

open. Set V := Ui ∩ V̂ and g := ĝ|V ∈ OX(V ). Then U ′ ∩ V = U ′i ∩ V̂ , so f, g
agree on U ′ ∩ V , and hence f ∈ OY (U ′).

(a) Let ι : Y ↪→ X be the inclusion, so that ι−1(U) = U ∩Y and ι is continuous.
Also, if f ∈ OX(U), then fι = f |Y ∩U , so clearly fι ∈ OY (ι−1(U)). This shows
that ι is a morphism of spaces with functions.

(b) If θ is a morphism, then so too is the composition ιθ. Suppose therefore
that ιθ is a morphism. Let U ′ ⊂ Y be open, and write U ′ = U ∩Y with U ⊂ X
open. Then U ′ = ι−1(U), so θ−1(U ′) = (ιθ)−1(U) is open in Z, whence ιθ is
continuous.

Next take f ∈ OY (U ′). Given y ∈ U ′, take an open V ⊂ X containing y
and g ∈ OX(V ) such that f, g agree on V ∩ U ′. Then the restriction of fθ
lies in OZ(θ−1(V ∩ U ′). We can do this for all points of U ′, obtaining an
open covering U ′ =

⋃
i U
′
i , whose preimages under θ form an open covering

θ−1(U ′) =
⋃

i θ
−1(U ′i). Thus each restriction of fθ is regular, so fθ is itself

regular. This proves that θ is a morphism of spaces with functions.

4. Let X be a set, and B a collection of subsets of X which is closed
under finite intersections and contains ∅ and X. Suppose further that
we have algebras O′X(U) for each U ∈ B with the property that, if
f ∈ O′X(U) and V ⊂ U in B, then f |V ∈ O′X(V ).

(a) Define the distinguished open sets as

D(g, U) := {u ∈ U : g(u) 6= 0} for U ∈ B, g ∈ O′X(U).

Show that this collection of subsets is again closed under finite inter-
sections, and contains B.

Show that there is a topology on X whose open sets are precisely the
arbitrary unions of distinguished opens.

(b) Let W ⊂ X be open. We define OX(W ) to be the set of those functions
h : W → K for which there exists, for each point w ∈ W , an open
U ∈ B and f, g ∈ O′X(U) such that

• w ∈ D(g, U).

• h = f/g on W ∩D(g, U).

Show that this construction gives X the structure of a space with
functions.

(c) Let Z be any space with functions, and θ : Z → X any map. Show
that θ is a morphism of spaces with functions if and only if

• θ−1(U) is open in Z for all U ∈ B.

• fθ ∈ OZ(θ−1(U)) for all U ∈ B and f ∈ O′X(U).
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Proof. I should have said that each O′(U) is a K-subalgebra of functions U →
K. This was implicit in Exercise (b), but should have been made explicit. Sorry
if this lead to any confusion.

(a) Suppose f ∈ O′(U) and g ∈ O′(V ). Then U ∩V is in B, and the restrictions
of f, g lie in O′(U ∩ V ). Thus D(f, U) ∩ D(g, V ) = D(fg, U ∩ V ). Thus the
collection of distinguished opens is closed under finite intersections. If U ∈ B,
then the identity lies in O′(U) (this is the function u 7→ 1 for all u ∈ U), and
D(1, U) = U . Thus each element of B is distinguished.

Now, given any collection U of subsets of X, closed under finite intersections
and containing ∅, X, there exists a topology on X whose opens are precisely
the arbitrary unions of elements of U . For, it is clear that this larger collection
contains ∅ and X, and is closed under arbitrary unions. It is therefore enough
to show that the intersection of two such elements is again in the set, since then
by induction it will be closed under all finite intersections.

Let U =
⋃

i Ui and V =
⋃

j Vj with Ui, Vj ∈ U . Then U ∩ V =
⋃

i,j(Ui ∩ Vj),
and Ui ∩ Vj ∈ U , so we are done.

(b) Let W =
⋃

iWi, and h : W → K. Write hi := h|Wi
.

Suppose h ∈ O(W ). Take w ∈ Wi. Then there exists U ∈ B, and f, g ∈ O′(U),
such that w ∈ D(g, U) and h = f/g on W ∩ D(g, U). Then hi = f/g on
Wi ∩D(g, U), so hi ∈ O(Wi) for all i.

Suppose instead that hi ∈ O(Wi) for all i. Take w ∈ W , say with w ∈ Wi.
Since Wi is open, it is a union of distinguished opens, so we can write w ∈
D(p, V ) ⊂ Wi for some V ∈ B and p ∈ O′(V ). Next, as above, we know that
h|D(p,V ) = hi|D(p,V ) is regular, so lies in O(D(p, V )). Thus there exists Û ∈ B
and f̂ , ĝ ∈ O′(Û) such that w ∈ D(ĝ, Û) and h = f̂/ĝ on D(p, V ) ∩ D(ĝ, Û).

Set U := Û ∩ V ∈ B, as well as f := f̂p and g := ĝp in O′(U). Then D(g, U) ⊂
D(p, V ) ⊂ W , it contains w, and h = f/g on D(g, U). We conclude that
h ∈ O(W ) is regular.

Next, take h ∈ O(W ). We need to show thatW ′ := {w ∈W : h(w) 6= 0} is open,
and 1/h ∈ O(W ′). Given w ∈ W ′, take U ∈ B and f, g ∈ O′(W ′) such that
w ∈ D(g, U) and h = f/g on W ∩D(g, U). Then v ∈W ′ ∩D(g, U) if and only
if f(v) 6= 0, so W ′∩D(g, U) = D(fg, U) is open. Moreover, 1/h = g/f = g2/fg
on D(fg, U), so is regular. It follows that W ′ is a union of distinguished opens,
so is itself open, and 1/h is regular on each of these distinguished opens, so 1/h
is itself regular. Thus W ′ is open and 1/h ∈ O(W ′).

This proves that X is a space with functions. Furthermore, it is clear from the
construction that O′(U) is a subalgebra of O(U) for all U ∈ B.

(c) If θ is a morphism of spaces with functions, then the two conditions neces-
sarily hold. Suppose therefore that θ : Z → X satisfies the two conditions. Con-
sider a distinguished open D(g, U). Then θ−1(U) is open and gθ ∈ OZ(θ−1(U)).
Thus D(gθ, θ−1(U)) is open in Z, and this is precisely the preimage of D(g, U).
In general, every open of X is a union of distinguished opens, so its preimage is
the union of the preimages, and hence is open. This proves that θ is continuous.

Now let W ⊂ X be open, and h ∈ OX(W ). Given z ∈ θ−1(W ), we can find U ∈
B, and f, g ∈ O′X(U), such that θ(z) ∈ D(g, U) and h = f/g on W ∩D(g, U).
Then V := θ−1(W∩D(g, U)) is an open neighbourhood of z, and hθ = (fθ)/(gθ)
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on V . Since fθ, gθ are regular on θ−1(U), it follows that hθ is regular on V . It
follows that θ−1(W ) has an open covering such that the restriction of hθ to any
of the open pieces is regular, and hence hθ ∈ OZ(θ−1(W )).

This proves that θ is a morphism of spaces with functions.

5. Apply the previous result to the set Kn, using B = {Kn, ∅} together
with O′(Kn) = K[X1, . . . , Xn] and O′(∅) = 0, where the Xi are the
co-ordinate functions on Kn.

(a) Show that the resulting space with functions is An.

(b) Deduce moreover that if Z is a space with functions and θ : Z → An

is any map, then θ is a morphism of spaces with functions if and only
if Xiθ ∈ O(Z) for all i.

Proof. Recall that we have the co-ordinate functions Xi : Kn → K, x 7→ xi.
Thus K[X1, . . . , Xn] is a subalgebra of functions Kn → K.

(a) The distinguished opens are just the D(g) = {x ∈ Kn : g(x) 6= 0} for g ∈
K[X1, . . . , Xn], so the opens in Kn are the arbitrary unions of such distinguished
opens. Hence Kn has the Zariski topology.

Let U ⊂ Kn be open and h : U → K. Then h ∈ O(U) if and only if, for each
u ∈ U , there exist f, g ∈ K[X1, . . . , Xn] such that g(u) 6= 0 and h = f/g on
U ∩D(g). Thus the resulting space with functions is precisely affine space An,
as defined in the lectures.

(b) Now let Z be a space with functions, and θ : Z → An any map. By (c) of
the previous exercise, we see that θ is a morphism of spaces with functions if
and only if fθ ∈ O(Z) for all f ∈ K[X1, . . . , Xn]. Since the regular functions
form a K-algebra, it is sufficient to ask that Xiθ is regular for all i; equivalently,
writing θ(z) = (θ1(z), . . . , θn(z)) ∈ Kn as in the lectures, we see that Xiθ = θi,
so θ is a morphism if and only if θi is regular for all i.

Here is another example. Take the set K ∪ {∞}, the collection B = {∅,K −
{0},K, U,K ∪ ∞}, where U is the complement of {0}. Now take O′(∅) =
0,O′(K ∪ {∞}) = K, O′(K) = K[X], O′(U) = K[X−1], and O′(K − {0}) =
K[X,X−1], where X is the usual co-ordinate function on K, and X−1 acts on
U by sending x 7→ 1/x for 0 6= x ∈ K, and ∞ 7→ 0.

This satisfies the conditions, and so we obtain a space with functions, which is
precisely the projective line P1. The topology is the cofinite topology. If Z is a
space with functions, and θ : Z → P1 and map, then θ is a morphism provided
θ−1(K) is open and Xθ is a regular function on it, and also θ−1(U) is open and
X−1θ is a regular function on it.
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6. We can also apply this result to describe the product. Let X and Y
be spaces with functions.

(a) Using Exercise (4) show that we can endow the set X × Y with the
structure of a space with functions as follows.

We take B to be the collection of U × V such that U ⊂ X and V ⊂ Y
are both open. We take O′X×Y (U × V ) to be those functions h such
that

h(u, v) :=
∑
finite

fi(u)gi(v), with fi ∈ OX(U) and gi ∈ OY (V ).

(b) Show that the projection maps πX : X ×Y → X and πY : X ×Y → Y
are both morphisms of spaces with functions.

(c) Let pX : Z → X and pY : Z → Y be morphisms of spaces with func-
tions. Show that there is a unique morphism of spaces with functions
p : Z → X × Y such that pX = πXp and pY = πY p.

This proves that X × Y with the above structure as a space with
functions is a categorical product. Namely, we have morphisms
πX : X × Y → X and πY : X × Y → Y such that the induced map

Hom(Z,X × Y )→ Hom(Z,X)×Hom(Z, Y ), p 7→ (πXp, πY p),

is bijective.

Proof. Just to be clear, h ∈ O′(U ×V ) provided there exists n and fi ∈ OX(U)
and gi ∈ OY (V ) for i = 1, . . . , n such that h(u, v) =

∑n
i=1 fi(u)gi(v) for all

(u, v) ∈ U × V .

(a) The collection B contains ∅ and X × Y , and is closed under taking finite
intersections. If h ∈ O′(U×V ) and U ′×V ′ ⊂ U×V , then clearly the restriction
of h lies in O′(U ×V ′). Thus the conditions are satisfied, and we have endowed
X × Y with the structure of a space with functions.

(b) Let U ⊂ X be open, and f ∈ O(X). Then π−1
X (U) = U × Y is open,

and fπX(u, y) = f(u) clearly lies in O′(U × Y ), so is regular. Thus πX is a
morphism. Similarly πY is a morphism.

(c) Sorry, there was a typo here: clearly we should have pY : Z → Y .

We can define the map p = (pX , py) : Z → X × Y , z 7→ (pX(z), pY (z)). This
satisfies πXp = pX and πY p = pY , and is the unique map (of sets) satisfying this.
We therefore just need to check that p is a morphism of spaces with functions.

Consider the open set U × V . Then p−1(U × V ) = p−1
X (U)∩ p−1

Y (V ), so is open
in Z. Now take h ∈ O′(U × V ), say with h(u, v) =

∑
finite fi(u)gi(v) where

fi ∈ OX(U) and gi ∈ OY (V ). Then hp(z) =
∑

finite fipX(z)gipY (z). We know
that fipX ∈ OZ(p−1

X (U)) and gipY ∈ OZ(p−1
Y (V )), so their restrictions all lie

in OZ(p−1(U × V )), and hence hp ∈ OZ(p−1(U × V )). By Exercise 4 (c) we
conclude that p is indeed a morphism of spaces with functions.

6



Here is some context/motivation for the category of spaces with functions. I
don’t know what was said in the lectures, but there was not much discussion
about this in the online notes.

We are interested in the affine and projective varieties, so more generally quasi-
projective varieties (locally closed subspaces of some projective space). The
resulting category is easily seen to contain all finite products (as in Exercise 6)
and coproducts (disjoint unions, which we can embed in suitable larger variety).
It also contains all equalisers, so contains all finite limits (standard exercise in
basic category theory). The basic problem is that it does not contain coequalis-
ers, so does not contain all colimits. We also say that the category is complete,
but not cocomplete.

Examples of coequalisers include quotients by group actions. If a group G acts
on a set X, then we have the group action ρ : G × X → X, and the second
projection π : G × X → X, and their coequaliser is the set of G-orbits on X,
denoted X/G.

One way around this problem is thus to embed the category of (quasi-projective)
varieties into a larger category which is both complete and cocomplete, and such
that colimits and coproducts agree. We can then form a coequaliser/colimit in
the larger category, and ask whether it lies in the smaller category. One subtlety
then arises that a colimit may exist in the category of varieties, but it is not
the colimit in the larger category. This can be seen as the motivation for the
definition of a geometric quotient: it is a quotient (colimit) in the category of
varieties which satisfies the stronger property of remaining a quotient (colimit)
in the larger category.

The usual approach in algebraic geometry is to define the category of locally
ringed spaces. This is very general and covers all affine schemes, so SpecR
for an arbitrary commutative ring R. Kempf instead restricted to algebraically
closed fields, and introduced the category of spaces with functions. Both of
these categories are complete and cocomplete, and so can be used as described
above. They are distinct, however; for example, if X is a space with functions,
then each ring O(U) is necessarily a domain, whereas a locally ringed space can
have nilpotents.

As a consequence, spaces with functions are more elementary, but the price one
pays is in doing some of the more sophisticated constuctions such as consider-
ing tangent spaces as morphisms from the ring K[t]/(t2), or the more unified
approach between the ‘closed’ points and the ‘generic’ points of a scheme.
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