Non-commutative Algebra 3, SS 2020

Lectures: W. Crawley-Boevey Exercises: A. Hubery

Solutions 2

Throughout K will be an algebraically closed field. For simplicity we define an affine K-algebra to be one which is finitely generated, commutative and reduced.

Nullstellensatz. Let A be a finitely generated (commutative) K-algebra.

- If $\mathfrak{m} \triangleleft A$ is a maximal ideal, then the natural map $K \rightarrow A/\mathfrak{m}$ is an isomorphism.
- If I ⊲ A is any ideal, then its radical √I = {a ∈ A : aⁿ ∈ I for some n} is the intersection of all maximal ideals containing I, so √I = ∩_{m⊃I} m.

Sketch of proof. We know that $\overline{A} := A/\mathfrak{m}$ is a field which is finitely generated as a K-algebra. By Noether's Normalisation Lemma, \overline{A} is finite over a polynomial subalgebra $R = K[x_1, \ldots, x_r]$. Since finite extensions are integral, we know that R is a field. If $r \geq 1$, then (x_1) is a proper ideal, a contradiction. Thus R = K and \overline{A} is finite dimensional over K, so algebraic. Since K is algebraically closed, we conclude that $\overline{A} = K$.

By passing to the quotient A/\sqrt{I} , which is reduced, it is enough to show that $\bigcap \mathfrak{m} = 0$ in every affine algebra. Suppose $a \neq 0$. Then a is not nilpotent, so the localisation $A_a \cong A[t]/(1-at)$ is non-zero and hence contains a maximal ideal \mathfrak{n} . Its preimage \mathfrak{m} is a prime ideal of A, and we have the inclusions $K \subset A/\mathfrak{m} \subset A_a/\mathfrak{n}$. The composite is an isomorphism by the first part, so $A/\mathfrak{m} \cong K$ and \mathfrak{m} is a maximal ideal of A. Clearly a is a unit in A_a , so does not lie in \mathfrak{m} . Hence $\bigcap \mathfrak{m} \subset 0$ as required.

- 1. Let A be a affine K-algebra, and set $\operatorname{Spec} A$ to be the set of maximal ideals of A.
- (a) There is an injective algebra homomorphism from A to the algebra of functions Spec $A \to K$, sending a to the map $\mathfrak{m} \mapsto a + \mathfrak{m} \in A/\mathfrak{m} \cong K$.

Observe: \mathfrak{m} is the kernel of the map $A \to K$, $a \mapsto a(\mathfrak{m})$. Turn Spec A into a space with functions by taking $\mathcal{B} := \{\emptyset, \operatorname{Spec} A\}$ and $\mathcal{O}'(\operatorname{Spec} A) := A$. If X is any space with functions, then a map $\theta \colon X \to \operatorname{Spec} A$ is a morphism of spaces with functions if and only if $a\theta \in \mathcal{O}(X)$ for all $a \in A$.

- (b) Let $\theta: X \to \operatorname{Spec} A$ be a morphism of spaces with functions. Show that $a \mapsto a\theta$ is a K-algebra homomorphism $\phi: A \to \mathcal{O}(X)$. Moreover, for each $x \in X$, the maximal ideal $\theta(x) \in \operatorname{Spec} A$ is precisely the kernel of the map $A \to K$, $a \mapsto \phi(a)(x)$.
- (c) Conversely, given a K-algebra homomorphism $\phi: A \to \mathcal{O}(X)$, show that there is a map $\theta: X \to \operatorname{Spec} A$ sending $x \in X$ to the kernel of $A \to K, a \mapsto \phi(a)(x)$. Show that $a\theta = \phi(a) \in \mathcal{O}(X)$. Deduce that θ is a morphism of spaces with functions.
- (d) Show that these two constructions are mutually inverse, so yield a bijection between morphisms $X \to \operatorname{Spec} A$ and K-algebra homomorphisms $A \to \mathcal{O}(X)$.

Proof. (a) Note first that the composite $K \to A \to A/\mathfrak{m}$ is an isomorphism, so we are not making any choices in the isomorphism $A/\mathfrak{m} \cong K$. Also, the map $A \to A/\mathfrak{m}$ is an algebra homomorphism, and since the algebra structure on functions Spec $A \to K$ is given pointwise, it follows that the map from A to functions Spec $A \to K$ is an algebra homomorphism.

That it is injective follows from the NSS, since the kernel is $\bigcap \mathfrak{m} = 0$.

(b) The morphism θ defines a map $\phi: A \to \mathcal{O}(X)$, $a \mapsto a\theta$. Again, the algebra structure on $\mathcal{O}(X)$ is given pointwise, so ϕ will be an algebra homomorphism if and only if the map $A \to K$, $a \mapsto \phi(a)(x)$, is an algebra homomorphism for all $x \in X$. This clearly holds, since $\phi(a)(x) = a(\theta(x))$.

In particular, $\theta(x)$ is the kernel of the map $a \mapsto \phi(a)(x)$.

(c) Given ϕ , we define $\theta(x)$ to be the kernel of the K-algebra homomorphism $A \to K, a \mapsto \phi(a)(x)$. This map must be onto, so $\theta(x)$ is maximal and $A/\theta(x) = K$. Moreover, the induced map $A/\theta(x) \to K$, $a + \theta(x) \mapsto \phi(a)(x)$ is now an isomorphism of K-algebras, so is the identity on K. Thus $(a\theta)(x) = \phi(a)(x)$ for all $x \in X$, so $a\theta = \phi \in \mathcal{O}(X)$, and hence θ is a morphism of spaces with functions.

(d) Starting from $\theta: X \to \text{Spec } A$, we obtain $\phi: A \to \mathcal{O}(X)$, $a \mapsto a\theta$. The kernel of $a \mapsto \phi(a)(x)$ is $\theta(x)$, so from ϕ we can reconstruct θ .

Conversely, starting from $\phi: A \to \mathcal{O}(X)$ we obtain $\theta: X \to \operatorname{Spec} A, x \mapsto \operatorname{Ker}(a \mapsto \phi(a)(x))$. Then $a\theta = \phi$, so from θ we can reconstruct ϕ .

This proves that the two constructions are mutually inverse.

- 2. Let $\phi: A \to B$ be a homomorphism between two affine K-algebras.
- (a) If $\mathfrak{n} \triangleleft B$ is maximal, then $\phi^{-1}(\mathfrak{n}) \triangleleft A$ is maximal.
- (b) The morphism of spaces with functions θ : Spec $B \to$ Spec A corresponding to ϕ is given by $\theta(\mathfrak{n}) := \phi^{-1}(\mathfrak{n})$.
- (c) $\operatorname{Im}(\theta) \subset V(I)$ iff $I \subset \operatorname{Ker}(\phi)$. Deduce that $\overline{\operatorname{Im}(\theta)} = V(\operatorname{Ker}(\phi))$.
- (d) Show that θ is dense if and only if ϕ is injective.

Proof. (a) We have the inclusions $K \subset A/\phi^{-1}(\mathfrak{n}) \subset B/\mathfrak{n}$. The composite is an isomorphism by the NSS, so $A/\phi^{-1}(\mathfrak{n}) \cong K$ and $\phi^{-1}(\mathfrak{n})$ is maximal.

(b) We have $B = \mathcal{O}'(\operatorname{Spec} B) \to \mathcal{O}(B)$, so ϕ determines an algebra homomorphism $A \to \mathcal{O}(B)$, and hence a morphism θ : Spec $B \to \operatorname{Spec} A$. By construction, $\theta(\mathfrak{n})$ is the kernel of the map $a \mapsto \phi(a)(\mathfrak{n})$. Using that $K \to A/\phi^{-1}(\mathfrak{n}) \to B/\mathfrak{n}$ are both isomorphisms, this is the same as the the map $a \mapsto a(\phi^{-1}(\mathfrak{n}))$, so $\theta(\mathfrak{n}) = \phi^{-1}(\mathfrak{n})$.

(c) $\operatorname{Im}(\theta) \subset V(I)$ iff for all $\mathfrak{n} \in \operatorname{Spec} B$ we have $\phi^{-1}(\mathfrak{n}) \supset I$, equivalently $\phi(I) \subset \mathfrak{n}$. Since $\bigcap \mathfrak{n} = 0$, this is the same as saying $\phi(I) = 0$, or $I \subset \operatorname{Ker}(\phi)$.

Using this we see that $\overline{\operatorname{Im}(\theta)} = \bigcap_{I \subset \operatorname{Ker} \phi} V(I)$. If $I \subset \operatorname{Ker} \phi$, then $V(\operatorname{Ker} \phi) \subset V(I)$, and so the right hand side equals $V(\operatorname{Ker} \phi)$ as required.

(d) θ is dense if and only if $V(\text{Ker }\phi) = \text{Spec }A$, so $\text{Ker }\phi$ is contained in $\bigcap \mathfrak{m} = 0$, equivalently ϕ is injective.

- 3. Let A be a affine K-algebra, and $I \triangleleft A$ a radical ideal.
- (a) Show that A/I is a affine K-algebra.
- (b) The canonical algebra homomorphism $A \to A/I$ yields a morphism $\text{Spec}(A/I) \to \text{Spec} A$. This has image contained in V(I), so have morphism θ : $\text{Spec}(A/I) \to V(I)$.
- (c) The restriction map $A \to \mathcal{O}(V(I))$ induces an algebra homomorphism $A/I \to \mathcal{O}(V(I))$, and hence corresponds to a morphism $\phi: V(I) \to \operatorname{Spec}(A/I)$. Show further that $\phi(\mathfrak{m}) = \mathfrak{m}/I$ for all maximal ideals $\mathfrak{m} \supset I$, and hence that ϕ and θ are mutually inverse.
- (d) Give an example of a continuous map $\theta: X \to Y$ between two topological spaces such that θ is bijective but not a homeomorphism.

Proof. (a) It is clear that A/I is finitely generated and commutative; it is reduced since I is radical.

(b) Using Question 2, the map $\operatorname{Spec}(A/I) \to \operatorname{Spec} A$ sends a maximal ideal of A/I to its preimage in A. The preimage necessarily contains I, so lies in V(I). By Sheet 1 Question 3 we have the induced morphism θ : $\operatorname{Spec}(A/I) \to V(I)$.

(c) We have the algebra homomorphisms $A = \mathcal{O}'(A) \rightarrow \mathcal{O}(\operatorname{Spec} A) \rightarrow \mathcal{O}(V(I))$, the latter map being restriction. We know that I lies in the kernel of the composite, so we have the induced algebra map $A/I \rightarrow \mathcal{O}(V(I))$. This determines a morphism $\phi: V(I) \rightarrow \operatorname{Spec}(A/I)$, sending \mathfrak{m} containing I to the kernel of the map $A/I \rightarrow A/\mathfrak{m}$, $a + I \mapsto a(\mathfrak{m})$, which is precisely the ideal \mathfrak{m}/I .

Now ϕ and θ are mutually inverse by the Third Isomorphism Theorem.

(d) The easiest example is maybe the following. Given a set X, let X_{disc} be X equipped with the discrete topology, where every set is open, and X_{indisc} be X equipped with the indiscrete topology, where the only opens are \emptyset and X. Thus there is a continuous bijection $X_{\text{disc}} \to X_{\text{indisc}}$, which is a homeomorphism precisely when $|X| \leq 1$.

Perhaps a more interesting example is $[0, 1) \rightarrow S^1$, $t \mapsto \exp(2\pi i t)$, where both sets have their usual topologies. This is not a homeomorphism, since [0, 0.5) is open but its image is not open.

- 4. Let A be a affine K-algebra. Given $0 \neq a \in A$, we can form the algebra $A_a := A[t]/(1-at)$.
- (a) Show that A_a is a affine K-algebra.
- (b) The canonical algebra map $A \to A_a$ yields a morphism Spec $A_a \to$ Spec A. This has image contained in D(a), so have morphism θ : Spec $A_a \to D(a)$.
- (c) The restriction map $A \to \mathcal{O}(D(a))$ induces an algebra homomorphism $A_a \to \mathcal{O}(D(a))$, and hence corresponds to a morphism $\phi: D(a) \to \operatorname{Spec} A_a$.
- (d) Show that ϕ and θ are mutually inverse.

Proof. (a) Every element of A_a is represented by a polynomial in A[t]. Using that at = 1 we have $bt^r = ba^s t^{r+s}$, and hence we can represent every element by a polynomial of the form bt^r . In particular, A finitely generated and commutative implies the same for A_a .

Next, the natural map $A \to A_a$ is injective. For, if $b \mapsto 0$, then b = (1 - at)p(t) in A[t], and computing coefficients of t yields p = 0, whence b = 0.

Finally, A_a is reduced. For, if bt^r is nilpotent, then so too is $b = b(at)^r$, whence $b \in A$ is nilpotent. Now use that A is reduced.

(b) The map Spec $A_a \to \text{Spec } A$ is given by taking the preimage of an ideal, equivalently by sending \mathfrak{n} to the kernel \mathfrak{m} of the map $A \to A_a \to A_a/\mathfrak{n}$. Since *a* is sent to a unit in A_a , it cannot lie in the kernel, so $\mathfrak{m} \in D(a)$. By Sheet 1, Question 3 we get a morphism Spec $A_a \to D(a)$.

(c) We have the algebra homomorphisms $A = \mathcal{O}'(\operatorname{Spec} A) \to \mathcal{O}(\operatorname{Spec} A) \to \mathcal{O}(D(a))$, the latter map being restriction. We know that $1/a \in \mathcal{O}(D(a))$, so

we have the induced algebra map $A_a \to \mathcal{O}(D(a)), t \mapsto 1/a$. This determines a morphism $\phi: D(a) \to \operatorname{Spec} A_a$ sending \mathfrak{m} not containing a to the kernel of the map $A_a \to K$, $bt^r \mapsto b(\mathfrak{m})/a(\mathfrak{m})^r$, which is precisely the ideal $\{bt^r : b \in \mathfrak{m}\}$ (equivalently $\mathfrak{m}A_a$).

(d) We have $\theta(\mathfrak{n}) = \{b \in A : b \in \mathfrak{n}\}$ and $\phi(\mathfrak{m}) = \{bt^r : b \in \mathfrak{m}\}$. Thus $\phi\theta(\mathfrak{n}) \subset \mathfrak{n}$ and $\mathfrak{m} \subset \theta \phi(\mathfrak{m})$. Since all the ideals are maximal, we must have equalities. Thus θ and ϕ are mutually inverse.

- 5. Let A be a affine K-algebra. We show that $\mathcal{O}(\operatorname{Spec} A) = A$. Combining with the previous two exercises yields $\mathcal{O}(D(a)) = A_a$ and $\mathcal{O}(V(I)) =$ A/I.
- (a) If $f \in A$ is zero on D(g), then fg is zero on Spec A, and hence fg = 0in A.
- (b) Take $\theta \in \mathcal{O}(\operatorname{Spec} A)$. We can write $\operatorname{Spec} A = \bigcup_{\alpha} D(g'_{\alpha})$ such that $\theta = f'_{\alpha}/g'_{\alpha}$ on $D(g'_{\alpha})$. Set $f_{\alpha} := f'_{\alpha}g'_{\alpha}$ and $g_{\alpha} = (g'_{\alpha})^2$. Show:

 - (i) $D(g_{\alpha}) = D(g'_{\alpha}).$ (ii) $\theta = f_{\alpha}/g_{\alpha}$ on $D(g_{\alpha}).$ (iii) $f_{\alpha}g_{\beta} = f_{\beta}g_{\alpha}$ as elements of A.
- (c) Set $I := (g_{\alpha})$. Show that $V(I) = \emptyset$, so I = A. Deduce that $1 = \sum_{\alpha} s_{\alpha} g_{\alpha}$ (finite sum).
- (d) Set $h := \sum_{\alpha} s_{\alpha} f_{\alpha}$ in A. Show $hg_{\beta} = f_{\beta}$, so $h = f_{\beta}/g_{\beta} = \theta$ on $D(g_{\beta})$. Deduce that $\theta = h$ as functions Spec $A \to K$.

Proof. (a) We have Spec $A = D(g) \sqcup V(g)$, and g is zero as a function on V(g). Thus fg is zero as a function on Spec A, so is contained in $\bigcap \mathfrak{m} = 0$, whence fg = 0 in A.

(b) θ is regular, so by definition we can find such f'_{α}, g'_{α} .

(i) Maximal ideals are prime, so $g_{\alpha} \in \mathfrak{m}$ iff $g'_{\alpha} \in \mathfrak{m}$. Hence $V(g_{\alpha}) = V(g'_{\alpha})$, and so their complements also agree, $D(g_{\alpha}) = D(g'_{\alpha})$.

(ii) For all $x \in D(g_{\alpha})$ we have $f_{\alpha}(x)/g_{\alpha}(x) = f'_{\alpha}(x)g'_{\alpha}(x)/g'_{\alpha}(x)^2 = f'_{\alpha}(x)/g'_{\alpha}(x)$.

(iii) Set $f'' := f'_{\alpha}g'_{\beta} - f'_{\beta}g'_{\alpha}$. Then f''(x) = 0 for all $x \in D(g'_{\alpha}g'_{\beta})$, so $f''g'_{\alpha}g'_{\beta} = 0$ in A by Part (a). In other words, $f_{\alpha}g_{\beta} = f_{\beta}g_{\alpha}$ in A.

(c) We have $V(I) = \bigcap_{\alpha} V(g_{\alpha})$, so its complement is $\bigcup_{\alpha} D(g_{\alpha}) = \operatorname{Spec} A$. Hence $V(I) = \emptyset$, so I is not contained in any maximal ideal, and hence I = A. In particular, $1 \in I$, so we can write $1 = \sum_{\alpha} s_{\alpha} g_{\alpha}$ as a finite sum, so almost all s_{α} are zero.

(d) Using (b)(iii) we have $hg_{\beta} = \sum_{\alpha} s_{\alpha} f_{\alpha} g_{\beta} = \sum_{\alpha} s_{\alpha} f_{\beta} g_{\alpha} = f_{\beta}$. Thus $h(x) = f_{\beta}(x)/g_{\beta}(x) = \theta(x)$ for all $x \in D(g_{\beta})$ (Here was a small typo on the exercise sheet.) Hence $h(x) = \theta(x)$ on all of Spec A, so $\theta = h \in A$. It now follows that the map sending affine A to Spec A yields a contravariant equivalence between the category of affine K-algebras and the category of affine varieties, the inverse map being $X \mapsto \mathcal{O}(X)$.