
Non-commutative Algebra 3, SS 2020

Lectures: W. Crawley-Boevey
Exercises: A. Hubery

Solutions 3

Throughout K will be an algebraically closed field. For simplicity we define an
affine K-algebra to be one which is finitely generated, commutative and reduced.

1. Let A and B be affine K-algebras, and consider the K-algebra A⊗KB.

(a) Let mCA be a maximal ideal. Show that (A⊗B)/(m⊗B) ∼= B.

(b) Show that A⊗B is reduced.

(c) Prove that A⊗K B is again an affine K-algebra.

(d) Deduce that if X,Y are affine varieties, then K[X×Y ] ∼= K[X]⊗K[Y ].

Proof. (a) By the Nullstellensatz we know that A/m = K. We therefore have an
algebra homomorphism A⊗B → B, a⊗b 7→ (a+m)b. This is clearly surjective,
with kernel containing m⊗B. For the converse, take a K-basis {bi} for B and
suppose

∑
i ai ⊗ bi (finite sum) lies in the kernel. Thus

∑
i(ai + m)bi = 0, so

ai + m = 0 for all i, whence ai ∈ m and
∑

i ai ⊗ bi ∈ m⊗B.

(b) Again, {bi} is a K-basis of B. Take a maximal ideal m C A. The image of
c =

∑
i ai⊗bi in (A⊗B)/(m⊗B) ∼= B is nilpotent, hence zero since B is reduced.

Thus ai ∈ m for all i. This holds for all maximal ideals, so ai ∈
⋂

m = 0 since
A is reduced. Thus c = 0.

(c) There exist surjections K[x, . . . , xm] � A and K[y1, . . . , yn] � B, so there
exists a surjection K[xi, yj ] � A ⊗ B. Thus A ⊗ B is finitely generated, it is
clearly commutative, and we saw in (b) that it is reduced.

(d) A duality swaps products and coproducts. Thus K[X ×Y ] is the coproduct
of K[X] and K[Y ] in the category of affine K-algebras. As K-algebras, the
coproduct is K[X] ⊗ K[Y ], and since this is affine, this is automatically the
coproduct in the category of affine K-algebras. Thus K[X × Y ] ∼= K[X] ⊗
K[Y ].



2. Define a map of sets φ : Pm × Pn → Pmn+m+n, ([xi], [yp]) 7→ ([xiyp]).

(a) Show that this map is well-defined and injective.

(b) Let Z ⊂ Pmn+m+n be the closed subset V ′({ZipZjq −ZiqZjp}). Show
that φ has image Z.

(c) Show further that φ restricts to an isomorphism of spaces with func-
tions

Am × An ∼= D′(Xi)×D′(Yp)
∼−→ Z ∩D′(Zip).

(d) Deduce that φ : Pm × Pn → Z is an isomorphism of spaces with func-
tions.

Proof. (a) If λ, µ ∈ K×, then ([λxi], [µyp]) 7→ [λµxiyp] = [xiyp]. Thus φ doesn’t
depend on the choice of representatives.

Now suppose [xiyp] = [x′iy
′
p]. Then there exists λ ∈ K× with x′iy

′
p = λxiyp.

There exists some (i, p) such that this is nonzero. Thus yp, y
′
p 6= 0 and we have

x′i = (λyp/y
′
p)xi for all i. Thus [x′i] = [xi]. Swapping the roles of x and y gives

[y′p] = [yp], proving that the map is injective.

Alternatively, though this wasn’t explicitly stated in the online notes, a mor-
phism between projective varieties is a map which is given locally by homoge-
neous polynomials of the same degree. Here we actually have a global descrip-
tion using the homogeneous polynomials XiYp of degree two. In fact, every map
from projective space has such a global definition; this holds more generally for a
projective variety V ′(I) ⊂ Pn such that the homogeneous ring K[X0, . . . , Xn]/I
is a unique factorisation domain. There are easy examples when this is not the
case, for example the map V ′(X2 − Y Z) → P1 given by [X,Y ] on D′(Y ) and
[Z,X] on D′(Z).

(b) An element of the image is of the form [xiyp], which is sent by the function
ZipZjq to xixjypyq. It follows that Im(φ) ⊂ Z. Conversely, take z ∈ Z, say
with zip 6= 0. Set xj := zjp/zip and yq := ziq/zip. Then xi = 1 = yp, so we have
a point ([xi], [yp]) ∈ Pm × Pn. Under φ this is sent to [xjyq]. Using that z ∈ Z
we compute

xjyq = zjpziq/z
2
ip = zjq/zip

and so [xjyq] = [zjq]. Thus φ is surjective.

(c) For convenience we take i = 0 = p. We then have the ismorphism Am ∼=
D′(X0), (x1, . . . , xm) 7→ [1, x1, . . . , xm]; similarly An ∼= D′(Y0) and Amn+m+n ∼=
D′(Z00). Let W ⊂ Amn+m+n be the closed subset corresponding to Z∩D′(Z00).

With these identifications, φ retricts to Am × An → Amn+m+n, (xi, yp) 7→
(xiyp). This is given by polynomials, hence is a morphism, and its image lies
in W . Conversely, using (b) we see that the inverse to φ is given by the map
Amn+m+n → Am × An, (zip) 7→ (zi0, z0p), restricted to W . Again, this is given
by polynomials, so is a morphism.

(d) We now have the bijective map φ : Pm×Pn → Z which is locally an isomor-
phism of spaces with functions. Hence φ is a morphism of spaces with functions,
as is its set-theoretic inverse. Thus φ is an isomorphism.
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3. Let θ : X → Y be a continous map of topological spaces.

(a) Show that X connected implies θ(X) is connected.

(b) Show that X irreducible implies θ(X) is irreducible.

(c) Show that X is irreducible if and only if every non-empty open is
dense.

Proof. (a) Write θ(X) = Y1 t Y2 as a disjoint union of two closeds. Set Xi :=
θ−1(Yi). Then X = X1 ∪ X2 is a union of two closeds, and X1 ∩ X2 = ∅. As
X is connected, we may assume X = X1. Thus θ(X) is contained in the closed
set Y1, whence Y1 = θ(X).

(b) Write θ(X) = Y1 ∪ Y2 as a union of two closeds. Set Xi := θ−1(Yi). Then
X = X1 ∪ X2 is a union of two closeds, so by irreducibility we may assume
X = X1. Thus θ(X) is contained in the closed set Y1, whence Y1 = θ(X).

(c) Suppose X is irreducible, and let U ⊂ X be open, with complement C.
Then X = U ∪C, so either U = ∅ or else C = ∅, equivalently U is either empty
or dense. If X is not irreducible, then we can write X = X1 ∪ X2 as a union
of proper closeds. Now U = Xc

1 is nonempty open and contained in X2, so its
closure is contained in the proper subset X2.

4. We have the surjective continuous map π : An+1 − {0} → Pn. Show
that π is a morphism of spaces with functions.

Proof. Let U ⊂ Pn be open, and f ∈ OP(U) regular. Take (xi) ∈ π−1(U).
Since f is regular, there exists an open neighbourhood W of [xi] with W ⊂ U ,
homogeneous polynomials P,Q of the same degree with Q(xi) 6= 0 and f = P/Q
on W . Now π−1(W ) is an open neighbourhood of (xi) with π−1(W ) contained in
π−1(U), we have polynomials Pπ = P,Qπ = Q with Q(xi) 6= 0, and fπ = P/Q
on π−1(W ). This shows that fπ is locally a regular function on π−1(U), whence
fπ ∈ OA(π−1(U)) is regular.
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5. Let X = K∪{0′} with the cofinite topology. Set K ′ := X−{0}, which
we can again identify with A1.
For an open subset U ⊂ X we define O(U) as follows:
If 0′ 6∈ U , then U ⊂ K ∼= A1 and we can define O(U).
If 0 6∈ U , then U ⊂ K ′ ∼= A1 and we can define O(U).
If U = X then we set O(X) = K[t], where t is the usual co-ordinate
function on K and sends 0′ to zero.

(a) Show that this construction determines a space with functions.

(b) Show that X is not separated.

Proof. (a) We apply Exercise Sheet 1, Question 4. Take B = {∅,W,K,K ′, X},
where W = K ∩ K ′ = K − {0}. Then B is closed under finite intersections.
We have O′(U) for U ∈ B, where O′(W ) := K[t±]. These satisfy the necessary
restriction condition. Thus we have a space with functions.

We check that this construction yields the cofinite topology on X. Suppose
X − U is finite. There exists g ∈ K[t±] such that D(g,W ) = U ∩W ⊂ A1.
Multiplying by a suitable power of t we may assume that g ∈ K[t] has nonzero
constant term.

If 0, 0′ ∈ U , then U = D(g,X). If 0 ∈ U , 0′ 6∈ U , then U = D(g,K). Similarly
if 0 6∈ U , 0′ ∈ U , then U = D(g,K ′). Finally, if 0, 0′ 6∈ U , then U = U ∩W =
D(g,W ).

Thus every cofinite subset is open. Conversely, since a nonzero (Laurent) poly-
nomial has only finitely many zeros, each distinguished D(g, U) must be cofinite.
So every open is cofinite.

Now we check that there are no more regular functions on K,K ′, X. Let f ∈
OX(K) be regular. Then locally it is given by a quotient of polynomials, so
actually lies in OA(K) = K[t] = O′X(K). Similarly OX(K ′) = K[t].

Suppose instead that f ∈ OX(X). Then f |K is regular, so is given by a poly-
nomial g[t]. Similarly f |K′ = h[t]. These polynomials must agree on W , so
g = h ∈ K[t±], so actually g = h ∈ K[t]. Thus f = g ∈ K[t] is a polynomial,
and OX(X) = K[t] (and f(0) = f(0′)).

(b) The complement of the diagonal ∆X ⊂ X × X clearly contains K × {0′},
since 0′ 6∈ K. Now K,K ′ are both isomorphic to A1, so K × K ′ ⊂ X × X is
isomorphic to A2. Let U ⊂ A2 be an open containing K×{0}. Then U intersects
the diagonal ∆A in A2 in the point (0, 0), and ∆A ∼= A1, so the intersection is
cofinite, and hence contains some (a, a) with a 6= 0. It follows that every open
in K×K ′ containing K×{0′} must contain some (a, a) with a 6= 0, so intersects
∆X . Thus ∆X is not closed, and X is not separated.
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