Non-commutative Algebra 3, SS 2020

Lectures: W. Crawley-Boevey Exercises: A. Hubery

Solutions 4

Throughout K will be an algebraically closed field. For simplicity we define an affine K-algebra to be one which is finitely generated, commutative and reduced.

- 1. G is an affine algebraic group, and A = K[G].
- (a) $A \otimes_K A$ acts on $G \times G$ via $(a \otimes b)(g,h) = a(g)b(h)$. Multiplication $G \times G \to G$, $(g,h) \mapsto gh$, induces an algebra homomorphism $\Delta \colon A \to A \otimes_K A$, $\Delta(a)(g,h) \coloneqq a(gh)$. Show that $(\Delta \otimes id)\Delta = (id \otimes \Delta)\Delta$.
- (b) Have constant map Spec $K \to G$ with image 1, giving an algebra homomorphism $\varepsilon \colon A \to K$, $\varepsilon(a) = a(1)$. Show that $(\varepsilon \otimes id)\Delta = id = (id \otimes \varepsilon)\Delta$.
- (c) Multiplication μ on A corresponds to diagonal $G \to G \times G, g \mapsto (g, g)$.
- (d) Inversion on G corresponds to an algebra endomorphism S of A. Show that S is invertible and satisfies $\mu(S \otimes id)\Delta = \varepsilon = \mu(id \otimes S)\Delta$.
- (e) Have $\tau: G \times G \to G \times G$, $(g, h) \mapsto (h, g)$, corresponding to an algebra automorphism τ of $A \otimes_K A$. Show that $\tau(a \otimes b) = b \otimes a$.

Know A is commutative if and only if $\mu \tau = \mu$. We say A is cocommutative if $\tau \Delta = \Delta$. Show that A is cocommutative if and only if G is commutative.

Proof. (a) We have $(\Delta \otimes id)(a \otimes b)(f, g, h) = \Delta(a)(f, g)b(h) = a(fg)b(h) = (a \otimes b)(fg, h)$. Thus $(\Delta \otimes id)\Delta(a)(f, g, h) = \Delta(a)(fg, h) = a(fgh)$.

(b) We have $(\varepsilon \otimes id)(a \otimes b)(g) = a(1)b(g) = (a \otimes b)(1,g)$. Thus $(\varepsilon \otimes id)\Delta(a)(g) = \Delta(a)(1,g) = a(g)$.

(c) We have $\mu(a \otimes b)(g) = (ab)(g) = a(g)b(g) = (a \otimes b)(g,g)$.

(d) We have $S(a)(g) = a(g^{-1})$, so $S^2(a) = a$ and S is invertible. Also, $\mu(S \otimes \mathrm{id})(a \otimes b)(g) = S(a)(g)b(g) = a(g^{-1})b(g) = (a \otimes b)(g^{-1},g)$. Thus $\mu(S \otimes \mathrm{id}\Delta(a)(g) = \Delta(a)(g^{-1},g) = a(1) = \varepsilon(a)$.

(e) We have $\tau(a \otimes b)(g,h) = (a \otimes b)(h,g) = a(h)b(g) = (b \otimes a)(g,h)$. Now $\tau \Delta(a)(g,h) = a(hg)$, so $\tau \Delta = \Delta$ if and only if a(hg) = a(gh) for all a, g, h.

Given an affine variety X and distinct points $x, y \in X$, there always exists some $f \in K[X]$ with f(x) = 0, $f(y) \neq 0$. (In terms of affine algebras, this says that given two distinct maximal ideals, there is an element in one of them but not in the other.)

So, knowing that a(hg) = a(gh) for all a implies that hg = gh. Knowing this for all g, h says that G is commutative.

2. Consider the affine variety $G = K^{\times} \times K$, together with the action

$$G \times G \to G$$
, $(a, b) \cdot (c, d) := (ac, bc + d)$.

- (a) Show that G is an affine algebraic group.
- (b) Compute A = K[G].
- (c) Compute the comultiplication $\Delta \colon A \to A \otimes_K A$.
- (d) Compute the antipode $S: A \to A$.

Proof. (a) The multiplication is a morphism of varieties. Inversion is $(a, b) \mapsto (a^{-1}, -ba^{-1})$, again a morphism of varieties. Unit is (1, 0). Hence affine algebraic group.

(b) Product of varieties corresponds to coproduct of algebras, so

$$K[G] \cong K[X^{\pm 1}] \otimes_K K[Y] \cong K[X^{\pm 1}, Y].$$

$$\begin{split} &(c) \ \Delta(X)((a,b),(c,d)) = X(ac,bc+d) = ac = (X \otimes X)((a,b),(c,d)), \text{ so } \Delta(X) = X \otimes X. \\ &\Delta(Y)((a,b),(c,d)) = Y(ac,bc+d) = bc+d = (Y \otimes X + 1 \otimes Y)((a,b),(c,d)), \text{ so } \Delta(Y) = Y \otimes X + 1 \otimes Y. \\ &(d) \ S(X)(a,b) = X(a^{-1},-ba^{-1}) = a^{-1} = X^{-1}(a,b), \text{ so } S(X) = X^{-1}. \\ &S(Y)(a,b) = Y(a^{-1},-ba^{-1}) = -ba^{-1} = (-X^{-1}Y)(a,b), \text{ so } S(Y) = -X^{-1}Y. \\ & \Box \end{split}$$

We check that $\mu(S \otimes id)\Delta = \varepsilon = \mu(id \otimes S)\Delta$.

$$\mu(S \otimes \mathrm{id})\Delta(X) = \mu(S(X) \otimes X) = X^{-1}X = 1$$

and

$$\mu(S \otimes \mathrm{id})\Delta(Y) = \mu(S(Y) \otimes X + S(1) \otimes Y) = -X^{-1}YX + Y = 0.$$

Similarly

$$\mu(\mathrm{id}\otimes S)\Delta(X) = \mu(X\otimes S(X)) = XX^{-1} = 1$$

and

$$\mu(\mathrm{id}\otimes S)\Delta(Y) = \mu(Y\otimes S(X) + 1\otimes S(Y)) = YX^{-1} - X^{-1}Y = 0.$$

Now $X(1,0) = 1$ and $Y(1,0) = 0$, so $\varepsilon(X) = 1$ and $\varepsilon(Y) = 0$.

- 3. Affine variety $G = \{M \in \operatorname{GL}_2(K) : MM^t = 1\}.$
- (a) Show that G is an affine algebraic group.
- (b) Compute A = K[G].
- (c) Compute the comultiplication $\Delta \colon A \to A \otimes_K A$.
- (d) Compute the antipode $S: A \to A$.

Proof. (a) Know that $GL_2(K)$ is an affine algebraic group. Now G is a subgroup, and is closed (see (b) below), so is also an affine algebraic group.

(b) $K[\mathbb{M}_2(K)] = K[W, X, Y, Z]$, using the co-ordinate functions $\begin{pmatrix} W & X \\ Y & Z \end{pmatrix}$. If $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, then $MM^t = 1$ if and only if

$$a^{2} + b^{2} = 1 = c^{2} + d^{2}, \quad ac + bd = 0.$$

So we definitely have $W^2 + X^2 = 1$, $Y^2 + Z^2 = 1$, WY + XZ = 0. It is not obvious that this is reduced, however.

Assume characteristic not 2. Taking just the first two relations, we obtain the reduced ring

$$K[W,X]/(W^2 + X^2 - 1) \otimes K[Y,Z]/(Y^2 \otimes Z^2 - 1).$$

This is free as a K[X, Z]-module, with basis 1, W, Y, WY. The quotient by (XZ + WY) is therefore free over K[X, Z] with basis 1, W, Y. Suppose $(p + qW + rY)^2 = 0$ in this quotient ring, where $p, q, r \in K[X, Y]$. Then

$$(p^{2} + (1 - X^{2})q^{2} + (1 - Z^{2})r^{2} - 2XZqr) + 2Wpq + 2Ypr = 0.$$

Looking at the coefficients of W and Y we see that either p = 0, or else q = r = 0. If q = r = 0, then $p^2 = 0$, so p = 0 as well. Otherwise p = 0, and then $(1 - X^2)q^2 + (1 - Z^2)r^2 = 2XZqr$ in K[X, Z]. Suppose q, r have greatest common divisor f. Then q/f and r/f also satisfy this equation, so we may assume that q, r have no common divisors. Now q divides $(1 - Z^2)r^2$, so must divide $1 - Z^2$. Similarly r divides $1 - X^2$. If $q \neq 0$ for some $Z = \pm 1$, then q = 2 and we get $1 - X^2 = \pm Xr$, a contradiction. Thus $q = \lambda(1 - Z^2)$, and similarly $r = \mu(1 - X^2)$, and then $\lambda + \mu = 2XZ\lambda\mu$. We conclude that $\lambda = \mu = 0$, so again p = q = r = 0.

This proves that, in characteristic not 2,

$$K[G] = K[W, X, Y, Z] / (W^{2} + X^{2} - 1, Y^{2} + Z^{2} - 1, WY + XZ).$$

In characteristic 2 we have a + b = 1, c + d = 1, ac + bd = 0. So b = 1 + aand c = 1 + d, and then 0 = ac + bd = a + d. Thus $G \cong K$ via $\begin{pmatrix} a & a+1 \\ 1+a & a \end{pmatrix}$, and $K[G] \cong K$.

(c) The comultiplication comes from the group multiplication

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix} = \begin{pmatrix} aa' + bc' & ab' + bd' \\ ca' + dc' & cb' + dd' \end{pmatrix}.$$

Thus

$$\Delta(W) = W \otimes W + X \otimes Y, \quad \Delta(X) = W \otimes X + X \otimes Z$$

$$\Delta(Y) = Y \otimes W + Z \otimes Y, \quad \Delta(Z) = Y \otimes X + Z \otimes Z.$$

(d) The antipode comes from inversion, which in ${\cal G}$ is given by the transpose. Thus

$$S(W) = W, \quad S(X) = Y, \quad S(Y) = X, \quad S(Z) = Z.$$

Note that $\mu(S \otimes id)\Delta(W) = W^2 + Y^2$. This equals 1 in K[G], since

$$W^{2}Y^{2} = X^{2}Z^{2} = (1 - W^{2})(1 - Y^{2}) = 1 - (W^{2} + Y^{2}) + W^{2}Y^{2}.$$

- 4. Consider the action of $G = K^{\times}$ on K^2 given by $g \cdot (x, y) := (gx, g^{-1}y)$.
- (a) Compute the comodule structure $K[X, Y] \to K[T, T^{-1}, X, Y]$.
- (b) Show that every morphism $K^2 \to \operatorname{Spec} A$ which is constant on orbits factors through uniquely through $\pi \colon K^2 \to K$, $(x, y) \mapsto xy$.
- (c) Show that π is not a geometric quotient.

Proof. (a) The image of X is the function $G \times K^2 \to K$, $(g, x, y) \mapsto gx$. Thus $X \mapsto TX$.

The image of Y is the function $G \times K^2 \to K$, $(g, x, y) \mapsto g^{-1}y$. Thus $Y \mapsto T^{-1}Y$. (b) Morphism $\theta \colon K^2 \to \text{Spec } A$ constant on G-orbits. Then $\theta^{-1}\theta(t, 0)$ is closed, so contains (0, 0). Deduce that $\theta(t, 0) = \theta(0, t)$ for all $t \in K$. Now have morphism $\bar{\theta} \colon K \to \text{Spec } A$, $t \mapsto \phi(t, 1)$, and $\theta = \bar{\theta}\pi$.

Alternatively, have algebra homomorphism $\phi: A \to K[X, Y]$. Constant on orbits if and only if the image in $K[T^{\pm 1}, X, Y]$ does not involve T. The monomial X^aY^b is sent to $T^{a-b}X^aY^b$, so does not involve T if and only if a = b. So only polynomials in XY are allowed in ϕ . Hence ϕ factors through the subalgebra K[XY]. Equivalently, the map $K^2 \to \text{Spec } A$ factors through $\pi: K^2 \to K$, $(x, y) \mapsto xy$.

(c) There are four types of orbits. (0,0), $K^{\times} \times \{0\}$, $\{0\} \times K^{\times}$, and $C_{\lambda} := \{(t, \lambda/t) : t \in K^{\times}\}$ for each $\lambda \in K^{\times}$.

The map π sends the first three of these to 0, and $C_{\lambda} \mapsto \lambda$. Hence π is not a geometric quotient.

- 5. Affine algebraic group G acts on variety X, with $\pi: X \to X/G$ a geometric quotient.
- (a) If $U \subset X$ open, then so is $gU = \{g \cdot u : u \in U\}$ for each $g \in G$.
- (b) Show that π is an open map.

Proof. (a) Multiplication by g is continuous as a map $X \to X$, so if $U \subset X$ is open, then so is its preimage under multiplication by g, so $g^{-1}U \subset X$ is open. Doing this for g^{-1} instead of g, we get that $gU \subset X$ is open.

(b) Let U be open. Then $\pi^{-1}\pi(U) = \bigcup_{g \in G} gU$ is open, so that $\pi(U)$ is open. \Box

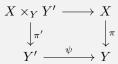
- 6. G an algebraic group. Here G-bundle means Zariski-locally trivial principal G-bundle.
- (a) G acts on X, $\pi: X \to Y$ a G-bundle. Open cover $Y = \bigcup_i V_i$ and local trivialisations $\phi_i: G \times V_i \xrightarrow{\sim} \pi^{-1}(V_i), \ \phi_i(gh, v) = g\phi_i(h, v).$

For each i, j set $V_{ij} := V_i \cap V_j$. Transition functions $\phi_j^{-1} \phi_i$ on $G \times V_{ij}$. Show that $\phi_j^{-1} \phi_i$ is of the form $(g, v) \mapsto (g\gamma(v), v)$ for some $\gamma \colon V_{ij} \to G$.

(b) $\pi': X' \to Y$ another *G*-bundle. Morphism of *G*-bundles over *Y* is morphism $\theta: X \to X'$ such that $\theta(g \cdot x) = g\theta(x)$ and $\pi'\theta = \pi$. Show that every such morphism is an isomorphism.

It follows that we have a category of G-bundles over Y, and this category is a groupoid.

- (c) Show that a *G*-bundle $\pi: X \to Y$ is trivial, so isomorphic to $G \times Y \to Y$, $(g, y) \mapsto y$, if and only if π admits a section, so a morphism $\sigma: Y \to X$ such that $\pi \sigma = \operatorname{id}_Y$.
- (d) Let $\pi: X \to Y$ be a *G*-bundle. Given a morphism $\psi: Y' \to Y$, we can form the pullback



Show that the map $\pi' \colon X' \to Y'$ is again a *G*-bundle.

(e) Let $\pi: X \to Y$ be a *G*-bundle. Show that the pullback $X \times_Y X \to X$ is a trivial *G*-bundle.

Proof. (a) Have morphism $\gamma: V_{ij} \to G$, given by $v \mapsto (1,v) \mapsto \phi_j^{-1}\phi_i(1,v)$ followed by projection onto G. Now $\phi_i(g,v) = g\phi_i(1,v) = g\phi_j(\gamma(v),v) = \phi_j(g\gamma(v),v)$, so $\phi_j^{-1}\phi_i(g,v) = (g\gamma(v),v)$.

(b) Open cover V'_j and local trivialisations $\psi_j : G \times V'_j \xrightarrow{\sim} \pi'^{-1}(V'_j)$. Intersecting gives common local trivialisation, so we may assume that $V'_i = V_i$. Now $\pi'\theta(x) = \pi(x)$, so θ restricts to a morphism $\pi^{-1}(V_i) \to \pi'^{-1}(V_i)$. Composing with the local trivialisations, get morphism $\psi_i^{-1}\theta\phi_i : G \times V_i \to G \times V_i$.

As in (a), have morphism $\theta_i \colon V_i \to G$, given by $v \mapsto (1, v) \mapsto \psi_i^{-1} \theta \phi_i(1, v)$ followed by projection onto G. Now $\theta \phi_i(g, v) = g \theta \phi_i(1, v) = g \psi_i(\theta_i(v), v) = \psi_i(g \theta_i(v), v)$, so $\psi_i^{-1} \theta \phi_i(g, v) = (g \theta_i(v), v)$.

In particular, this map is an isomorphism, so the restriction $\pi^{-1}(V_i) \to {\pi'}^{-1}(V_i)$ is an isomorphism for all i, so θ is an isomorphism.

(c) The trivial bundle clearly admits the section $Y \to G \times Y$, $y \mapsto (1, y)$. Conversely, suppose π admits a section σ . We then have a morphism $\theta \colon G \times Y \to X$ of G-bundles over Y, $\theta(g, y) = g\sigma(y)$. Now θ is an isomorphism by (b).

(d) We have a morphism $G \times X \times Y' \to X$, $(g, x, y') \mapsto gx$, and a morphism $G \times X \times Y' \to Y'$, $(g, x, y') \mapsto y'$. The induced morphisms to Y agree, so we get a morphism $G \times X \times Y' \to X \times_Y Y'$, $(g, x, y') \mapsto (gx, y')$, and hence by restriction a morphism $G \times (X \times_Y Y') \to X \times_Y Y'$. Thus G acts on $X \times_Y Y'$. We have an open cover V_i of Y and local trivialisations $\phi_i \colon G \times V_i \xrightarrow{\sim} \pi^{-1}(V_i)$. Set $V'_i \coloneqq \psi^{-1}(V_i)$, yielding an open cover of Y'. We have the projection map $G \times V'_i \to V'_i$, $(g, v') \mapsto v'$, and the morphism $G \times V'_i \to \pi^{-1}(V_i)$, $(g, v') \mapsto \phi_i(g, \psi(v'))$. These induce a morphism $\phi'_i \colon G \times V'_i \to \pi'^{-1}(V'_i)$, necessarily satisfying $\phi'_i(gh, v') = g\phi'_i(h, v')$.

We also have a morphism ${\pi'}^{-1}(V'_i) \to {\pi}^{-1}(V_i) \xrightarrow{\sim} G \times V_i \to G$ and a morphism ${\pi'}^{-1}(V'_i) \to V'_i$, which together yield a morphism ${\pi'}^{-1}(V'_i) \to G \times V'$, which is an inverse to ψ'_i .

This shows that π' is locally trivial, so is a *G*-bundle.

(e) We know that the pullback $X \times_Y X \to X$ is a *G*-bundle, and it has a section $x \mapsto (x, x)$, so it is trivial by (c).

Q7 (Question below)

Proof. (a) To be a submodule we need that $M\binom{a}{b} \in K\binom{a'}{b'}$, so $\binom{a}{0} \in K\binom{a'}{b'}$, equivalently ab' = 0.

In this case there exists a unique $\lambda \in K$ such that $\binom{a}{0} = \lambda \binom{a'}{b'}$, and so fitting into a commutative diagram

M	K^2	$\xrightarrow{\left(\begin{array}{c}1&0\\0&0\end{array}\right)}$	K^2
Ţ	$\binom{a}{b}$		$\begin{pmatrix} a'\\b' \end{pmatrix}$
U	K	$\xrightarrow{\lambda}$	K

(b) Under the Segre embedding, the polynomial ab' corresponds to x, so the quiver Grassmannian $\operatorname{Gr}_Q(M,(1,1))$ is isomorphic to the subvariety V'(wz - xy, x) = V'(x, wz).

(c) Under the isomorphism $\mathbb{P}^2 \cong V'(x)$, the polynomial wz corresponds to su, so the Grassmannian $\operatorname{Gr}_Q(M, (1, 1))$ is isomorphic to $V'(x, wz) \cong V'(su)$.

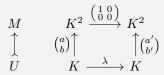
(d) Now $\operatorname{Gr}_Q(M, (1, 1)) \cong V'(su) \subset \mathbb{P}^2$ is the union of the two lines V'(s) and V'(u). Now s = 0 corresponds first to w = 0, and then to aa' = 0. So V'(s) corresponds to ([a, b], [a', b']) such that ab' = 0 = aa'. Since $[a', b'] \in \mathbb{P}^1$, this implies a = 0.

We compute the submodule as in (a). Then $\lambda {a' \choose b'} = 0$, so $\lambda = 0$.

(e) The complement is given by u = 0, $s \neq 0$. This corresponds first to z = 0, $w \neq 0$, and then to bb' = 0 and $aa' \neq 0$ (and ab' = 0). So b' = 0, $a \neq 0$, so we may assume a = a' = 1. Computing the submodule, we see that $\lambda = 1$.

- 7. Let Q be the quiver $1 \to 2$. We have $Mod(Q, (d, e)) \cong \mathbb{M}_{e \times d}(K)$, the variety of matrices of size $e \times d$.
- (a) Let $M = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \in \operatorname{Mod}(Q, (2, 2))$ and consider the quiver Grassmannian $\operatorname{Gr}_Q(M, (1, 1)) \subset \mathbb{P}^1 \times \mathbb{P}^1$. Show that the pair of lines $([a, b], [a', b']) \in \mathbb{P}^1 \times \mathbb{P}^1$ corresponds to a submodule of M, so a point of $\operatorname{Gr}_Q(M, (1, 1))$, if and only if the point $(a, 0) \in K^2$ lies on the line [a', b'], which is if and only if ab' = 0.

Note that the corresponding submodule is the image of the injective module homomorphism



Here λ is the unique map making the diagram commute.

- (b) Recall the Segre embedding, $\mathbb{P}^1 \times \mathbb{P}^1 \cong V'(wz xy) \subset \mathbb{P}^3$, sending the point ([a, b], [a', b']) to [aa', ab', ba', bb']. Show that this induces an isomorphism between $\operatorname{Gr}_Q(M, (1, 1))$ and $V'(x, wz) \subset \mathbb{P}^3$.
- (c) Show that the isomorphism $\mathbb{P}^2 \cong V'(x) \subset \mathbb{P}^3$, $[s, t, u] \mapsto [s, 0, t, u]$, induces an isomorphism $\operatorname{Gr}_Q(M, (1, 1)) \cong V'(su) \subset \mathbb{P}^2$.

In other words, we can regard $\operatorname{Gr}_Q(M,(1,1))$ as the union of the two projective lines V'(s) and V'(u) inside the projective plane \mathbb{P}^2 .

(d) Show that the submodules corresponding to the projective line $V^\prime(s)$ are those of the form

$$\begin{array}{c} K^2 \xrightarrow{\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}} K^2 \\ \begin{pmatrix} 0 \\ 1 \end{pmatrix} \uparrow & \uparrow \begin{pmatrix} a' \\ b' \end{pmatrix} \\ K \xrightarrow{0} K \end{array}$$

(e) Show that the complement, so the submodules corresponding to the open affine $V(u) \cap D(s) = \{[1, t, 0] : t \in K\} \cong \mathbb{A}^1$, are those of the form

$$\begin{array}{c} K^2 \xrightarrow{\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}} K^2 \\ \begin{pmatrix} 1 \\ t \end{pmatrix} \uparrow & \uparrow \begin{pmatrix} 1 \\ 0 \\ K \xrightarrow{1} & K \end{array}$$