
Non-commutative Algebra 3, SS 2020

Lectures: W. Crawley-Boevey
Exercises: A. Hubery

Solutions 4

Throughout K will be an algebraically closed field. For simplicity we define an
affine K-algebra to be one which is finitely generated, commutative and reduced.

1. G is an affine algebraic group, and A = K[G].

(a) A ⊗K A acts on G × G via (a ⊗ b)(g, h) = a(g)b(h). Multiplication
G×G→ G, (g, h) 7→ gh, induces an algebra homomorphism ∆: A→
A⊗K A, ∆(a)(g, h) := a(gh). Show that (∆⊗ id)∆ = (id⊗∆)∆.

(b) Have constant map SpecK → G with image 1, giving an algebra
homomorphism ε : A → K, ε(a) = a(1). Show that (ε ⊗ id)∆ = id =
(id⊗ ε)∆.

(c) Multiplication µ on A corresponds to diagonal G→ G×G, g 7→ (g, g).

(d) Inversion on G corresponds to an algebra endomorphism S of A. Show
that S is invertible and satisfies µ(S ⊗ id)∆ = ε = µ(id⊗ S)∆.

(e) Have τ : G×G→ G×G, (g, h) 7→ (h, g), corresponding to an algebra
automorphism τ of A⊗K A. Show that τ(a⊗ b) = b⊗ a.

Know A is commutative if and only if µτ = µ. We say A is cocommu-
tative if τ∆ = ∆. Show that A is cocommutative if and only if G is
commutative.

Proof. (a) We have (∆ ⊗ id)(a ⊗ b)(f, g, h) = ∆(a)(f, g)b(h) = a(fg)b(h) =
(a⊗ b)(fg, h). Thus (∆⊗ id)∆(a)(f, g, h) = ∆(a)(fg, h) = a(fgh).

(b) We have (ε⊗ id)(a⊗b)(g) = a(1)b(g) = (a⊗b)(1, g). Thus (ε⊗ id)∆(a)(g) =
∆(a)(1, g) = a(g).

(c) We have µ(a⊗ b)(g) = (ab)(g) = a(g)b(g) = (a⊗ b)(g, g).

(d) We have S(a)(g) = a(g−1), so S2(a) = a and S is invertible. Also,
µ(S ⊗ id)(a ⊗ b)(g) = S(a)(g)b(g) = a(g−1)b(g) = (a ⊗ b)(g−1, g). Thus
µ(S ⊗ id∆(a)(g) = ∆(a)(g−1, g) = a(1) = ε(a).

(e) We have τ(a ⊗ b)(g, h) = (a ⊗ b)(h, g) = a(h)b(g) = (b ⊗ a)(g, h). Now
τ∆(a)(g, h) = a(hg), so τ∆ = ∆ if and only if a(hg) = a(gh) for all a, g, h.

Given an affine variety X and distinct points x, y ∈ X, there always exists some
f ∈ K[X] with f(x) = 0, f(y) 6= 0. (In terms of affine algebras, this says that
given two distinct maximal ideals, there is an element in one of them but not
in the other.)

So, knowing that a(hg) = a(gh) for all a implies that hg = gh. Knowing this
for all g, h says that G is commutative.



2. Consider the affine variety G = K× ×K, together with the action

G×G→ G, (a, b) · (c, d) := (ac, bc+ d).

(a) Show that G is an affine algebraic group.

(b) Compute A = K[G].

(c) Compute the comultiplication ∆: A→ A⊗K A.

(d) Compute the antipode S : A→ A.

Proof. (a) The multiplication is a morphism of varieties. Inversion is (a, b) 7→
(a−1,−ba−1), again a morphism of varieties. Unit is (1, 0). Hence affine alge-
braic group.

(b) Product of varieties corresponds to coproduct of algebras, so

K[G] ∼= K[X±1]⊗K K[Y ] ∼= K[X±1, Y ].

(c) ∆(X)((a, b), (c, d)) = X(ac, bc+d) = ac = (X⊗X)((a, b), (c, d)), so ∆(X) =
X ⊗X.

∆(Y )((a, b), (c, d)) = Y (ac, bc+ d) = bc+ d = (Y ⊗X + 1⊗ Y )((a, b), (c, d)), so
∆(Y ) = Y ⊗X + 1⊗ Y .

(d) S(X)(a, b) = X(a−1,−ba−1) = a−1 = X−1(a, b), so S(X) = X−1.

S(Y )(a, b) = Y (a−1,−ba−1) = −ba−1 = (−X−1Y )(a, b), so S(Y ) = −X−1Y .

We check that µ(S ⊗ id)∆ = ε = µ(id⊗ S)∆.

µ(S ⊗ id)∆(X) = µ(S(X)⊗X) = X−1X = 1

and

µ(S ⊗ id)∆(Y ) = µ(S(Y )⊗X + S(1)⊗ Y ) = −X−1Y X + Y = 0.

Similarly
µ(id⊗ S)∆(X) = µ(X ⊗ S(X)) = XX−1 = 1

and

µ(id⊗ S)∆(Y ) = µ(Y ⊗ S(X) + 1⊗ S(Y )) = Y X−1 −X−1Y = 0.

Now X(1, 0) = 1 and Y (1, 0) = 0, so ε(X) = 1 and ε(Y ) = 0.
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3. Affine variety G = {M ∈ GL2(K) : MM t = 1}.

(a) Show that G is an affine algebraic group.

(b) Compute A = K[G].

(c) Compute the comultiplication ∆: A→ A⊗K A.

(d) Compute the antipode S : A→ A.

Proof. (a) Know that GL2(K) is an affine algebraic group. Now G is a subgroup,
and is closed (see (b) below), so is also an affine algebraic group.

(b) K[M2(K)] = K[W,X, Y, Z], using the co-ordinate functions
(
W X
Y Z

)
.

If M =
(
a b
c d

)
, then MM t = 1 if and only if

a2 + b2 = 1 = c2 + d2, ac+ bd = 0.

So we definitely have W 2 + X2 = 1, Y 2 + Z2 = 1, WY + XZ = 0. It is not
obvious that this is reduced, however.

Assume characteristic not 2. Taking just the first two relations, we obtain the
reduced ring

K[W,X]/(W 2 +X2 − 1)⊗K[Y, Z]/(Y 2 ⊗ Z2 − 1).

This is free as a K[X,Z]-module, with basis 1,W, Y,WY . The quotient by
(XZ + WY ) is therefore free over K[X,Z] with basis 1,W, Y . Suppose (p +
qW + rY )2 = 0 in this quotient ring, where p, q, r ∈ K[X,Y ]. Then

(p2 + (1−X2)q2 + (1− Z2)r2 − 2XZqr) + 2Wpq + 2Y pr = 0.

Looking at the coefficients ofW and Y we see that either p = 0, or else q = r = 0.

If q = r = 0, then p2 = 0, so p = 0 as well. Otherwise p = 0, and then
(1 − X2)q2 + (1 − Z2)r2 = 2XZqr in K[X,Z]. Suppose q, r have greatest
common divisor f . Then q/f and r/f also satisfy this equation, so we may
assume that q, r have no common divisors. Now q divides (1 − Z2)r2, so must
divide 1−Z2. Similarly r divides 1−X2. If q 6= 0 for some Z = ±1, then q = 2
and we get 1−X2 = ±Xr, a contradiction. Thus q = λ(1− Z2), and similarly
r = µ(1 − X2), and then λ + µ = 2XZλµ. We conclude that λ = µ = 0, so
again p = q = r = 0.

This proves that, in characteristic not 2,

K[G] = K[W,X, Y, Z]/(W 2 +X2 − 1, Y 2 + Z2 − 1,WY +XZ).

In characteristic 2 we have a + b = 1, c + d = 1, ac + bd = 0. So b = 1 + a
and c = 1 + d, and then 0 = ac+ bd = a+ d. Thus G ∼= K via

(
a a+1

1+a a

)
, and

K[G] ∼= K.

(c) The comultiplication comes from the group multiplication(
a b
c d

)(
a′ b′

c′ d′

)
=

(
aa′ + bc′ ab′ + bd′

ca′ + dc′ cb′ + dd′

)
.
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Thus
∆(W ) = W ⊗W +X ⊗ Y, ∆(X) = W ⊗X +X ⊗ Z

∆(Y ) = Y ⊗W + Z ⊗ Y, ∆(Z) = Y ⊗X + Z ⊗ Z.

(d) The antipode comes from inversion, which in G is given by the transpose.
Thus

S(W ) = W, S(X) = Y, S(Y ) = X, S(Z) = Z.

Note that µ(S ⊗ id)∆(W ) = W 2 + Y 2. This equals 1 in K[G], since

W 2Y 2 = X2Z2 = (1−W 2)(1− Y 2) = 1− (W 2 + Y 2) +W 2Y 2.

4. Consider the action of G = K× on K2 given by g · (x, y) := (gx, g−1y).

(a) Compute the comodule structure K[X,Y ]→ K[T, T−1, X, Y ].

(b) Show that every morphism K2 → SpecA which is constant on orbits
factors through uniquely through π : K2 → K, (x, y) 7→ xy.

(c) Show that π is not a geometric quotient.

Proof. (a) The image of X is the function G ×K2 → K, (g, x, y) 7→ gx. Thus
X 7→ TX.

The image of Y is the function G×K2 → K, (g, x, y) 7→ g−1y. Thus Y 7→ T−1Y .

(b) Morphism θ : K2 → SpecA constant on G-orbits. Then θ−1θ(t, 0) is closed,
so contains (0, 0). Deduce that θ(t, 0) = θ(0, t) for all t ∈ K. Now have mor-
phism θ̄ : K → SpecA, t 7→ φ(t, 1), and θ = θ̄π.

Alternatively, have algebra homomorphism φ : A → K[X,Y ]. Constant on or-
bits if and only if the image in K[T±1, X, Y ] does not involve T . The monomial
XaY b is sent to T a−bXaY b, so does not involve T if and only if a = b. So only
polynomials in XY are allowed in φ. Hence φ factors through the subalgebra
K[XY ]. Equivalently, the map K2 → SpecA factors through π : K2 → K,
(x, y) 7→ xy.

(c) There are four types of orbits. (0, 0), K× × {0}, {0} × K×, and Cλ :=
{(t, λ/t) : t ∈ K×} for each λ ∈ K×.

The map π sends the first three of these to 0, and Cλ 7→ λ. Hence π is not a
geometric quotient.

5. Affine algebraic group G acts on variety X, with π : X → X/G a
geometric quotient.

(a) If U ⊂ X open, then so is gU = {g · u : u ∈ U} for each g ∈ G.

(b) Show that π is an open map.
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Proof. (a) Multiplication by g is continuous as a map X → X, so if U ⊂ X is
open, then so is its preimage under multiplication by g, so g−1U ⊂ X is open.
Doing this for g−1 instead of g, we get that gU ⊂ X is open.

(b) Let U be open. Then π−1π(U) =
⋃
g∈G gU is open, so that π(U) is open.

6. G an algebraic group. Here G-bundle means Zariski-locally trivial
principal G-bundle.

(a) G acts on X, π : X → Y a G-bundle. Open cover Y =
⋃
i Vi and local

trivialisations φi : G× Vi
∼−→ π−1(Vi), φi(gh, v) = gφi(h, v).

For each i, j set Vij := Vi ∩Vj . Transition functions φ−1j φi on G×Vij .
Show that φ−1j φi is of the form (g, v) 7→ (gγ(v), v) for some γ : Vij → G.

(b) π′ : X ′ → Y another G-bundle. Morphism of G-bundles over Y is
morphism θ : X → X ′ such that θ(g · x) = gθ(x) and π′θ = π. Show
that every such morphism is an isomorphism.

It follows that we have a category of G-bundles over Y , and this cate-
gory is a groupoid.

(c) Show that a G-bundle π : X → Y is trivial, so isomorphic to G ×
Y → Y , (g, y) 7→ y, if and only if π admits a section, so a morphism
σ : Y → X such that πσ = idY .

(d) Let π : X → Y be a G-bundle. Given a morphism ψ : Y ′ → Y , we can
form the pullback

X ×Y Y ′ X

Y ′ Y

π′ π

ψ

Show that the map π′ : X ′ → Y ′ is again a G-bundle.

(e) Let π : X → Y be a G-bundle. Show that the pullback X ×Y X → X
is a trivial G-bundle.

Proof. (a) Have morphism γ : Vij → G, given by v 7→ (1, v) 7→ φ−1j φi(1, v)
followed by projection onto G. Now φi(g, v) = gφi(1, v) = gφj(γ(v), v) =
φj(gγ(v), v), so φ−1j φi(g, v) = (gγ(v), v).

(b) Open cover V ′j and local trivialisations ψj : G×V ′j
∼−→ π′

−1
(V ′j ). Intersecting

gives common local trivialisation, so we may assume that V ′i = Vi. Now π′θ(x) =

π(x), so θ restricts to a morphism π−1(Vi) → π′
−1

(Vi). Composing with the
local trivialisations, get morphism ψ−1i θφi : G× Vi → G× Vi.
As in (a), have morphism θi : Vi → G, given by v 7→ (1, v) 7→ ψ−1i θφi(1, v)
followed by projection onto G. Now θφi(g, v) = gθφi(1, v) = gψi(θi(v), v) =
ψi(gθi(v), v), so ψ−1i θφi(g, v) = (gθi(v), v).

In particular, this map is an isomorphism, so the restriction π−1(Vi)→ π′
−1

(Vi)
is an isomorphism for all i, so θ is an isomorphism.
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(c) The trivial bundle clearly admits the section Y → G × Y , y 7→ (1, y).
Conversely, suppose π admits a section σ. We then have a morphism θ : G×Y →
X of G-bundles over Y , θ(g, y) = gσ(y). Now θ is an isomorphism by (b).

(d) We have a morphism G × X × Y ′ → X, (g, x, y′) 7→ gx, and a morphism
G × X × Y ′ → Y ′, (g, x, y′) 7→ y′. The induced morphisms to Y agree, so we
get a morphism G × X × Y ′ → X ×Y Y ′, (g, x, y′) 7→ (gx, y′), and hence by
restriction a morphism G× (X ×Y Y ′)→ X ×Y Y ′. Thus G acts on X ×Y Y ′.
We have an open cover Vi of Y and local trivialisations φi : G× Vi

∼−→ π−1(Vi).
Set V ′i := ψ−1(Vi), yielding an open cover of Y ′. We have the projection map
G × V ′i → V ′i , (g, v′) 7→ v′, and the morphism G × V ′i → π−1(Vi), (g, v′) 7→
φi(g, ψ(v′)). These induce a morphism φ′i : G × V ′i → π′

−1
(V ′i ), necessarily

satisfying φ′i(gh, v
′) = gφ′i(h, v

′).

We also have a morphism π′
−1

(V ′i )→ π−1(Vi)
∼−→ G×Vi → G and a morphism

π′
−1

(V ′i )→ V ′i , which together yield a morphism π′
−1

(V ′i )→ G× V ′, which is
an inverse to ψ′i.

This shows that π′ is locally trivial, so is a G-bundle.

(e) We know that the pullback X×Y X → X is a G-bundle, and it has a section
x 7→ (x, x), so it is trivial by (c).

Q7 (Question below)

Proof. (a) To be a submodule we need that M
(
a
b

)
∈ K

(
a′

b′

)
, so

(
a
0

)
∈ K

(
a′

b′

)
,

equivalently ab′ = 0.

In this case there exists a unique λ ∈ K such that
(
a
0

)
= λ

(
a′

b′

)
, and so fitting

into a commutative diagram

M K2 K2

U K K

(
1 0
0 0

)
(
a
b

)
λ

(
a′

b′

)

(b) Under the Segre embedding, the polynomial ab′ corresponds to x, so the
quiver Grassmannian GrQ(M, (1, 1)) is isomorphic to the subvariety V ′(wz −
xy, x) = V ′(x,wz).

(c) Under the isomorphism P2 ∼= V ′(x), the polynomial wz corresponds to su,
so the Grassmannian GrQ(M, (1, 1)) is isomorphic to V ′(x,wz) ∼= V ′(su).

(d) Now GrQ(M, (1, 1)) ∼= V ′(su) ⊂ P2 is the union of the two lines V ′(s) and
V ′(u). Now s = 0 corresponds first to w = 0, and then to aa′ = 0. So V ′(s)
corresponds to ([a, b], [a′, b′]) such that ab′ = 0 = aa′. Since [a′, b′] ∈ P1, this
implies a = 0.

We compute the submodule as in (a). Then λ
(
a′

b′

)
= 0, so λ = 0.

(e) The complement is given by u = 0, s 6= 0. This corresponds first to z = 0,
w 6= 0, and then to bb′ = 0 and aa′ 6= 0 (and ab′ = 0). So b′ = 0, a 6= 0, so we
may assume a = a′ = 1. Computing the submodule, we see that λ = 1.
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7. Let Q be the quiver 1 → 2. We have Mod(Q, (d, e)) ∼= Me×d(K), the
variety of matrices of size e× d.

(a) Let M =
(
1 0
0 0

)
∈ Mod(Q, (2, 2)) and consider the quiver Grass-

mannian GrQ(M, (1, 1)) ⊂ P1 × P1. Show that the pair of lines
([a, b], [a′, b′]) ∈ P1 × P1 corresponds to a submodule of M , so a point
of GrQ(M, (1, 1)), if and only if the point (a, 0) ∈ K2 lies on the line
[a′, b′], which is if and only if ab′ = 0.

Note that the corresponding submodule is the image of the injective
module homomorphism

M K2 K2

U K K

(
1 0
0 0

)
(
a
b

)
λ

(
a′

b′

)
Here λ is the unique map making the diagram commute.

(b) Recall the Segre embedding, P1 × P1 ∼= V ′(wz − xy) ⊂ P3, sending
the point ([a, b], [a′, b′]) to [aa′, ab′, ba′, bb′]. Show that this induces an
isomorphism between GrQ(M, (1, 1)) and V ′(x,wz) ⊂ P3.

(c) Show that the isomorphism P2 ∼= V ′(x) ⊂ P3, [s, t, u] 7→ [s, 0, t, u],
induces an isomorphism GrQ(M, (1, 1)) ∼= V ′(su) ⊂ P2.

In other words, we can regard GrQ(M, (1, 1)) as the union of the two
projective lines V ′(s) and V ′(u) inside the projective plane P2.

(d) Show that the submodules corresponding to the projective line V ′(s)
are those of the form

K2 K2

K K

(
1 0
0 0

)
(
0
1

)
0

(
a′

b′

)

(e) Show that the complement, so the submodules corresponding to the
open affine V (u) ∩ D(s) = {[1, t, 0] : t ∈ K} ∼= A1, are those of the
form

K2 K2

K K

(
1 0
0 0

)
(
1
t

)
1

(
1
0

)
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