Non-commutative Algebra 3, SS 2020

Lectures: W. Crawley-Boevey
Exercises: A. Hubery

Solutions 4

Throughout K will be an algebraically closed field. For simplicity we define an
affine K -algebra to be one which is finitely generated, commutative and reduced.

1. G is an affine algebraic group, and A = K[G].

(a) A®kg A acts on G x G via (a ® b)(g,h) = a(g)b(h). Multiplication
G x G — G, (g,h) — gh, induces an algebra homomorphism A: A —
A®g A, A(a)(g,h) := a(gh). Show that (A ® id)A = (id ® A)A.

(b) Have constant map Spec K — G with image 1, giving an algebra
homomorphism ¢: A — K, e(a) = a(1). Show that (¢ ® id)A = id =
(id®e)A.

(¢) Multiplication u on A corresponds to diagonal G — G X G, g — (g, 9).

(d) Inversion on G corresponds to an algebra endomorphism S of A. Show
that S is invertible and satisfies p(S ® id)A = ¢ = u(id ® S)A.

(e) Have 7: G X G — G x G, (g,h) — (h, g), corresponding to an algebra
automorphism 7 of A ® ¢ A. Show that 7(a ® b) = b® a.

Know A is commutative if and only if y7 = . We say A is cocommu-
tative if 7A = A. Show that A is cocommutative if and only if G is
commutative.

Proof. (a) We have (A ® id)(a ® b)(f,g,h) = A(a)(f,g)b(h) = a(fg)b(h) =
(a®b)(fg,h). Thus (A ®id)A(a)(f,g,h) = Ala)(fg,h) = a(fgh).

(b) We have (e®id)(a®b)(g) = a(1)b(g) = (a®b)(1,g). Thus (¢®id)A(a)(g) =
A(a)(L, g) = a(g).

(¢c) We have pu(a @ b)(g) = (ab)(g) = a(g)b(g) = (a © b)(g,9)-

(d) We have S(a)(g) = a(g7!), so S%(a) = a and S is invertible. Also,
u(S ® id)(a ® b)(g) = S(a)(g)blg) = alg~')blg) = (a @ b)(g~',g). Thus
u(S @idA(a)(g) = Ala)(g™*, 9) = a(1) = £(a).

(e) We have 7(a ® b)(g,h) = (a ® b)(h,g) = a(h)b(g) = (b ® a)(g,h). Now
7A(a)(g,h) = a(hg), so TA = A if and only if a(hg) = a(gh) for all a, g, h.
Given an affine variety X and distinct points x,y € X, there always exists some
f e K[X] with f(z) =0, f(y) # 0. (In terms of affine algebras, this says that
given two distinct maximal ideals, there is an element in one of them but not
in the other.)

So, knowing that a(hg) = a(gh) for all a implies that hg = gh. Knowing this
for all g, h says that G is commutative. O



2. Consider the affine variety G = K* x K, together with the action
GxG—G, (ab)-(c,d):= (ac,bc+d).

a) Show that G is an affine algebraic group.

(a)

(b) Compute A = K[G].

(¢) Compute the comultiplication A: A - A @k A.
)

(d) Compute the antipode S: A — A.

Proof. (a) The multiplication is a morphism of varieties. Inversion is (a,b) —
(a=1, —ba1), again a morphism of varieties. Unit is (1,0). Hence affine alge-
braic group.

(b) Product of varieties corresponds to coproduct of algebras, so

K[G) =2 K[X* ek K[Y] =2 K[Xt,Y].

X®X.

A(Y)((a,b), (c,d)) =Y (ac,bc+d) =bc+d= (Y @ X +1®Y)((a,b), (¢, d)), so
AY)=Y®X+10Y

(d) S(X)(a,b) = X(a~t,—=ba"!)=a"t = X"Y(a,b),s0 S(X) = X1
S(Y)(a,b) = Y(a™t,—=ba=t) = —ba~! = (=X "1Y)(a,b), so S(Y) = —X"'Y.

O

We check that (S ®@ id)A = e = u(id @ S)A.

p(SRINA(X) =pu(S(X)@X)=X"1X =1

and
p(S@IAY) =pu(SY)@ X +S(1)®Y)=-X"'YX +Y =0.
Similarly
pid® HAX) = (X @ S(X)) = XX ' =1
and

pid@ HAY) =p(Y @ S(X)+125(Y) =YX ' - XY =0.

Now X(1,0) =1 and Y(1,0) =0, so ¢(X) =1 and e(Y") = 0.



3. Affine variety G = {M € GLy(K) : MM" =1}.
a

(
(b

) Show that G is an affine algebraic group.

) Compute A = K[G].

(¢) Compute the comultiplication A: A - A @k A.
)

(d) Compute the antipode S: A — A.

Proof. (a) Know that GLy(K) is an affine algebraic group. Now G is a subgroup,
and is closed (see (b) below), so is also an affine algebraic group.

(b) K[My(K)] = K[W, X,Y, Z], using the co-ordinate functions (¥ ¥ ).
IfM= (‘; g), then MM? =1 if and only if
A+ =1=+d% ac+bd=0.

So we definitely have W2 + X2 =1, Y2+ Z2 =1, WY + XZ = 0. It is not
obvious that this is reduced, however.
Assume characteristic not 2. Taking just the first two relations, we obtain the
reduced ring

KW, X]/W?+X? - 1) K[Y,Z]/(Y?® Z* - 1).

This is free as a K[X, Z]-module, with basis 1, WY, WY. The quotient by
(XZ + WY) is therefore free over K[X,Z] with basis 1, W,Y. Suppose (p +
gW +rY)? = 0 in this quotient ring, where p,q,r € K[X,Y]. Then

(P + (11— XHg + (1 - ZHr? —2X Zqr) + 2Wpq + 2Y pr = 0.

Looking at the coefficients of W and Y we see that either p = 0, or else ¢ = r = 0.
If g =1r =0, then p> = 0, so p = 0 as well. Otherwise p = 0, and then
(1—-X%)¢*> + (1 - Z?0r? = 2XZqgr in K[X,Z]. Suppose ¢,r have greatest
common divisor f. Then ¢/f and r/f also satisfy this equation, so we may
assume that ¢, have no common divisors. Now ¢ divides (1 — Z2)r?, so must
divide 1 — Z2. Similarly r divides 1 — X?2. If ¢ # 0 for some Z = £1, then ¢ = 2
and we get 1 — X? = £X7r, a contradiction. Thus ¢ = A\(1 — Z?), and similarly
r = u(l — X?), and then A + u = 2XZA u. We conclude that A = p = 0, so
againp=q=r=0.

This proves that, in characteristic not 2,

K[G) = KW, X,Y,Z]/(W?*+ X* - 1,Y?+ Z> — L,WY + X Z).

In characteristic 2 we have a +b =1, ¢c+d=1,ac+bd =0. Sob=1+a
and ¢ =1+d, and then 0 = ac+ bd = a +d. Thus G = K via (,¢, *'"), and
K|G]| ¢ K.

(¢) The comultiplication comes from the group multiplication

a b\ (d U\  [ad +b ab +bd
c d)J\d d) \cd+dd cb+dd )"



Thus
AW)=WeW+XY, AX)=WeX+XQZ

AY)=Y@W+2ZY, AZ)=YX+Z®Z

(d) The antipode comes from inversion, which in G is given by the transpose.
Thus
SWy=w, SX)=Y, SY)=X, S(Z)=2Z O

Note that u(S ®id)A(W) = W2 + Y2, This equals 1 in K[G], since

WY2=X?Z2=(1-W?)(1-Y?) =1-(W?+Y?) + W?Y2

4. Consider the action of G = K* on K? given by g-(z,v) := (97,9~ 'y).
(a) Compute the comodule structure K[X,Y] — K[T,T~!, X,Y].

(b) Show that every morphism K2 — Spec A which is constant on orbits
factors through uniquely through 7: K2 — K, (z,y) — zy.

(¢) Show that 7 is not a geometric quotient.

Proof. (a) The image of X is the function G x K? — K, (g,x,y) ~ gr. Thus
X—TX.

The image of Y is the function Gx K% — K, (g,7,y) = g~ 'y. Thus Y — T~1Y.

(b) Morphism 6: K2 — Spec A constant on G-orbits. Then §~16(¢,0) is closed,
so contains (0,0). Deduce that 6(¢,0) = 6(0,¢) for all t € K. Now have mor-
phism §: K — Spec A, t — ¢(t,1), and 6 = O7.

Alternatively, have algebra homomorphism ¢: A — K[X,Y]. Constant on or-
bits if and only if the image in K[T*!, X, Y] does not involve 7. The monomial
XY? is sent to T*°X*Y?, so does not involve 7" if and only if a = b. So only
polynomials in XY are allowed in ¢. Hence ¢ factors through the subalgebra
K[XY]. Equivalently, the map K? — Spec A factors through 7: K? — K,
(z,y) = zy.

(¢) There are four types of orbits. (0,0), K* x {0}, {0} x K*, and C) :=
{(t,\/t) : t € K*} for each A € K*.

The map 7 sends the first three of these to 0, and Cy — A. Hence 7 is not a
geometric quotient. O

5. Affine algebraic group G acts on variety X, with 7: X — X/G a
geometric quotient.

(a) If U C X open, then so is gU = {g-u:u € U} for each g € G.

(b) Show that 7 is an open map.




Proof. (a) Multiplication by ¢ is continuous as a map X — X,soif U C X is
open, then so is its preimage under multiplication by g, so g~'U C X is open.
Doing this for g~—! instead of g, we get that gU C X is open.

(b) Let U be open. Then 717 (U) = |, gU is open, so that 7(U) is open. [

geG

6. G an algebraic group. Here G-bundle means Zariski-locally trivial
principal G-bundle.

(a) G actson X, m: X — Y a G-bundle. Open cover Y = |J, V; and local
trivialisations ¢;: G x V; = 7= %(V;), ¢i(gh,v) = g¢;(h,v).
For each i, j set Vi; := V; N V;. Transition functions ¢;'¢; on G x Vj;.
Show that gbj_lqﬁi is of the form (g, v) — (gv(v), v) for some v: V;; — G.

(b) m': X’ — Y another G-bundle. Morphism of G-bundles over Y is
morphism 6: X — X’ such that (g - z) = gf(z) and 7’0 = 7. Show
that every such morphism is an isomorphism.

It follows that we have a category of G-bundles over Y, and this cate-
gory is a groupoid.

(¢) Show that a G-bundle 7: X — Y is trivial, so isomorphic to G x
Y =Y, (9,y) — v, if and only if = admits a section, so a morphism
o:Y — X such that 7o = idy.

(d) Let 7: X — Y be a G-bundle. Given a morphism ¢: Y’ — Y, we can
form the pullback

XxyY — X
vy —Y 5y
Show that the map 7’: X’ — Y” is again a G-bundle.

(e) Let m: X — Y be a G-bundle. Show that the pullback X xy X — X
is a trivial G-bundle.

Proof. (a) Have morphism ~: V;; — G, given by v — (1,v) — (Z)j_lgbi 1,v
followed by projection onto G. Now ¢;(g,v) = g¢i(1,v) = go;(v(v),v) =
$5(97(v),v), 50 ¢; ' di(g,v) = (g7(v),v).

(b) Open cover V/ and local trivialisations ¢;: Gx V] = 7r'_1(Vj’). Intersecting
gives common local trivialisation, so we may assume that V; = V;. Now 7'0(z) =
7(z), so 0 restricts to a morphism 7~ (V;) — 7'~ (V;). Composing with the
local trivialisations, get morphism ;" Y9g,: G x V; - G x V.

As in (a), have morphism 6;: V; — G, given by v +— (1,v) = ; '06;(1,
followed by projection onto G. Now 0¢;(g,v) = g0¢;(1,v) = gi;(6;(v),v)
¥i(g0i(v),v), s0 ¥; 10¢i(g,v) = (g0:(v),v).

In particular, this map is an isomorphism, so the restriction 7= (V) — 7r’71(Vl-)
is an isomorphism for all 7, so 6 is an isomorphism.

v)



(¢) The trivial bundle clearly admits the section ¥ — G x Y, y — (1,y).
Conversely, suppose m admits a section o. We then have a morphism : GxXY —
X of G-bundles over Y, 0(g,y) = go(y). Now 6 is an isomorphism by (b).

(d) We have a morphism G x X x Y’ — X, (g,2,y') — gz, and a morphism
GxXxY =Y (g,2,¢) — y'. The induced morphisms to Y agree, so we
get a morphism G x X x Y’ — X xy Y’ (g,2,9") — (g9z,9’), and hence by
restriction a morphism G x (X xy Y’) — X xy Y’. Thus G acts on X xy Y'.
We have an open cover V; of Y and local trivialisations ¢;: G x V; = W‘l(‘/;).
Set V' := ¢~1(V;), yielding an open cover of Y’. We have the projection map
G x V! = V! (g,v') = ¢, and the morphism G x V/ — 7=%V;), (g,v") —
¢:(g,%(v")). These induce a morphism ¢}: G x V! — 7r’71(Vi’), necessarily
satisfying ¢;(gh,v') = g¢i(h,v').

We also have a morphism 7'~ (V/) — 7= 1(V;) = G x V; = G and a morphism
-1 : . . —1 .
7'~ (V) — V/, which together yield a morphism 7'~ (V) — G x V', which is

an inverse to ;.
This shows that 7’ is locally trivial, so is a G-bundle.
(e) We know that the pullback X xy X — X is a G-bundle, and it has a section
x> (z,x), so it is trivial by (c).
O

Q7 (Question below)

Proof. (a) To be a submodule we need that M(]) € K(‘;,/), so (5) € K(‘;:),
equivalently ab’ = 0.

In this case there exists a unique A € K such that (g) = /\(‘Z:), and so fitting
into a commutative diagram

v e 88

G T

U K2, K

(b) Under the Segre embedding, the polynomial ab’ corresponds to z, so the
quiver Grassmannian Grg(M,(1,1)) is isomorphic to the subvariety V'(wz —
zy,x) = V'(z,wz).

(c) Under the isomorphism P? = V’(x), the polynomial wz corresponds to su,
so the Grassmannian Grg (MM, (1,1)) is isomorphic to V'(z, wz) = V' (su).

(d) Now Grg(M, (1,1)) = V'(su) C P? is the union of the two lines V’(s) and
V'(u). Now s = 0 corresponds first to w = 0, and then to aa’ = 0. So V'(s)
corresponds to ([a, b, [a’,b']) such that ab’ = 0 = aa’. Since [@/,b'] € P!, this
implies a = 0.

We compute the submodule as in (a). Then )\(Z,/) =0,50 A= 0.

(e) The complement is given by u = 0, s # 0. This corresponds first to z = 0,
w # 0, and then to bb’ = 0 and aa’ # 0 (and ab’ = 0). So V' =0, a # 0, so we
may assume a = ¢’ = 1. Computing the submodule, we see that A = 1. O



7. Let @ be the quiver 1 — 2. We have Mod(Q, (d,e)) = Mcxq(K), the
variety of matrices of size e X d.

(a) Let M = (§3) € Mod(Q,(2,2)) and consider the quiver Grass-
mannian Grg (M, (1,1)) € P! x PL. Show that the pair of lines
([a,b], [a’,b']) € P! x P! corresponds to a submodule of M, so a point
of Grg(M, (1,1)), if and only if the point (a,0) € K? lies on the line
[a@’, V'], which is if and only if ab’ = 0.

Note that the corresponding submodule is the image of the injective
module homomorphism
(58)
M K2 200 g2
|G e

U K25 K
Here ) is the unique map making the diagram commute.

(b) Recall the Segre embedding, P! x P! = V/(wz — zy) C P3, sending
the point ([a, b], [a’,b]) to [ad’, ab’,ba’, bb']. Show that this induces an
isomorphism between Grg (M, (1,1)) and V' (x,wz) C P3.

(c) Show that the isomorphism P? = V'(z) C P3, [s,t,u] — [s,0,t,u],
induces an isomorphism Grg (M, (1,1)) = V/(su) C P2
In other words, we can regard Grg(MM, (1,1)) as the union of the two
projective lines V'(s) and V'(u) inside the projective plane P2.

(d) Show that the submodules corresponding to the projective line V’(s)
are those of the form

O] &)
K"K

(e) Show that the complement, so the submodules corresponding to the
open affine V(u) N D(s) = {[1,¢,0] : t € K} = Al are those of the

form
(56)
K2 2004 g2

6l 16)

K— K




