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Lectures: W. Crawley-Boevey
Exercises: A. Hubery

Solutions 5

Throughout K will be an algebraically closed field.

1. Recall the fibre dimension theorem (3.3(E) Main Lemma).
If π : X → Y is a dominant morphism of irreducible varieties, then
any irreducible component of a fibre π−1(y) has dimension at least
dimX − dimY . Moreover, there is a non-empty open U ⊂ Y with
dimπ−1(y) = dimX − dimY for all u ∈ U .

(a) Assume this holds when X and Y are both affine. Show how to deduce
the result when just Y is affine. Show how this implies the general case.

(b) Translate the affine case into a result about commutative algebras.

Proof. (a) Cover X by finitely many open affines Xi, so each Xi is irreducible of
dimension dimX. Also, π−1(π(Xi)) is closed in the irreducible X and contains
the non-empty open Xi, so equals X. Hence π(X) ⊂ π(Xi), and each πi : Xi →
Y is a dominant morphism between irreducible affines.

If C ⊂ π−1(y) is an irreducible component, then C =
⋃
i Ci, where Ci =

C ∩ Xi. Each Ci is open in C, so is either empty or else irreducible with
dimCi = dimC. By the Main Lemma for affines, if Ci is non-empty, then
dimCi ≥ dimX − dimY . Hence dimC ≥ dimX − dimY .

Next take Ui ⊂ Y open dense such that dimπ−1i (y) = dimX − dimY for all
y ∈ Ui. Set U =

⋂
i Ui to be their intersection. Since Y is irreducible, U is open

dense, and dimπ−1(y) = dimX − dimY for all y ∈ U .

This proves the Main Lemma when just Y is affine.

Now for the general case. Take a finite open affine cover Yi of Y , and set
Xi := π−1(Yi). Then πi : Xi → Yi is a dominant morphism between irreducibles
with Yi affine, so the Main Lemma applies. Moreover, dimXi = dimX and
dimYi = dimY for all i. If C ⊂ π−1(y) is an irreducible component, then
C =

⋃
i Ci, where Ci = C ∩ π−1i (y). Again, each Ci is open in C, so is either

empty or irreducible with dimC = dimCi ≥ dimX − dimY .

For each i take Ui ⊂ Yi open dense such that dimπ−1i (y) = dimX − dimY for
all y ∈ Ui. Then U =

⋂
i Ui is open dense and dimπ−1(y) = dimX − dimY for

all y ∈ U .

This proves the Main Lemma in general.

(b) A dominant morphism between irreducible affines corresponds to an injective
algebra homomorphism φ : A� B between affine domains (=finitely generated
domains). A point in SpecA corresponds to a maximal ideal mCA, equivalently



to an algebra homomorphism A → K, in which case the fibre over the point
corresponds to the algebra B ⊗A K. The irreducible components of the fibre
correspond to the minimal primes of this algebra, equivalently to the primes
q C B, minimal with respect to lying over m (that is, q ∩ A = m). Since m is
maximal, every prime of B containing q lies over m, so the dimension of this
component of the fibre is the Krull dimension of B/q, which equals tr.deg κ(q),
where κ(q) is the field of fractions of B/q.

So the Main Lemma becomes the statement tr.deg κ(q) ≥ dimB − dimA for
all primes qCB, minimal over some mCA (and with equality for m in a dense
open subset).

More generally, one can prove the following. Again A ⊂ B are affine domains
(hence universally catenary), qCB a prime of B, and p := A ∩ q a prime of A.
Then

tr.degκ(p) κ(q) = (dimB − dimA) + (dimAp − dimBq),

where the right hand side involves the Krull dimensions of the localisations.

2. Recall that a constructible subset is a finite union of locally closed
subsets.

(a) Prove that the class of constructible subsets is closed under finite
unions, finite intersections, complements, and inverse images. (Cheval-
ley’s Theorem says it is also closed under images.)

(b) Prove that every constructible set V contains an open dense subset of
its closure V̄ , so there exists U ⊂ V with U open and dense in V̄ .

(c) Suppose a connected algebraic group G acts on a variety X, and let
V ⊂ X be a G-stable constructible subset, so G ·V = V . Show that we
can decompose V into a finite disjoint union of G-stable, irreducible
and locally closed subsets.

Proof. (a) Unions is clear. Intersection of two locally closeds is again locally
closed, so get the result for intersections. Complement of locally closed is locally
closed, so get complements. Preimage of locally closed is locally closed, so get
preimages.

(b) Assume first that V̄ is irreducible. Write V = V1 ∪ · · · ∪ Vr with Vi locally
closed. Since V̄ = V̄1 ∪ · · · ∪ V̄r is irreducible, we must have V̄ = V̄i for some i.
Now Vi = Ui ∩ V̄ for some open Ui, so Ui is open dense in V̄ and contained in
V .

In general write V̄ = C1 ∪ · · · ∪ Cn as the union of its irreducible components,
and set Vi := V ∩ Ci, so constructible with V̄i = Ci. By the first part, each Vi
contains some U ′i , open dense in V̄i. Set Ui := U ′i −

⋃
j 6=i Cj . Then Ui is open

in V̄ , contained in V , with closure Ci. Thus U :=
⋃
i Ui is open dense in V̄ and

contained in V .

(c) Obviously for this to work we need the group G to be connected (so irre-
ducible as a variety).
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Write V̄ = C1 ∪ · · · ∪ Cn as the union of its irreducible components. As in
(b) we can find disjoint Ui ⊂ V with Ui open in V̄ and closure Ci. Now set
Vi :=

⋃
g∈G gUi. This is still contained in V and open in V̄ . Moreover, as it is

the image of G× Ui → X, it is irreducible, so V̄i = Ci. Thus V1 ∪ · · · ∪ Vn is a
disjoint union of G-stable, irreducible locally closed subsets.

Now repeat the argument with V ′ := V −
⋃
i Vi. By construction, V̄ ′ ∩ Ci is a

proper subset for each i, so we are done by induction on dimension.

3. We know that if f : X → Y is a dominant morphism of varieties and X
is irreducible, then Y is irreducible. In general the converse fails, so Y
irreducible does not imply X irreducible. We prove that the converse
holds in three situations.
Let f : X → Y be a dominant morphism of varieties with Y irreducible.
Assume further that each non-empty fibre is irreducible of the same
dimension d.

(a) Suppose f is an open map. Prove that X is irreducible. (In fact, all
we need for this is that there is a dense set of points y ∈ Y such that
f−1(y) is nonempty and irreducible .)

(b) In general, decompose X = X1 ∪ · · · ∪Xn into its irreducible compo-
nents. Show that some f(Xi) is dense in Y . Apply the Main Lemma to
get that there is some i such that f(Xi) is dense, and f−1(y) ⊂ Xi for
all y ∈ f(Xi). Deduce that if f(Xi) = Y , then X = Xi is irreducible.

(c) Suppose f is a closed map. Prove that X is irreducible.

(d) Suppose instead that f admist a section s, so a morphism s : Y → X
with fs = idY . Prove that X is irreducible.

Proof. (a) Let Y ′ ⊂ Y be an open dense subset such that f−1(y) is non-empty
irreducible for all y ∈ Y ′.
Suppose we have non-empty open disjoint U, V ⊂ X. Since f(U), f(V ), Y ′ are
non-empty open and Y is irreducible, they must intersect. Take y ∈ f(U) ∩
f(V ) ∩ Y ′. Then f−1(y) = (f−1(y) ∩ U) ∪ (f−1(y) ∩ V ) is a disjoint union of
non-empty opens, contradicting the fact that the fibre is irreducible.

We deduce that X is irreducible.

(b) Each f(Xi) is irreducible, and Y =
⋃
i f(Xi), so Y irreducible implies some

f(Xi) is dense. Set I := {i : f(Xi) dense}.
Set Y ′ to be the complement of

⋃
j 6∈I f(Xj), so that Y ′ is open dense in Y .

Then for all y ∈ Y ′ we have f−1(y) =
⋃
i∈I f

−1(y) ∩Xi.

By the Main Lemma, for each i ∈ I there exists an open dense Ui ⊂ Y ′ such
that f−1(y) ∩Xi has dimension dimXi − dimY . Since f−1(y) is irreducible of
dimension d, there exists some i for which f−1(y) ∩Xi has dimension d. Now
for any other y ∈ f(Xi) we have f−1(y) ∩Xi has dimension at least d, by the
Main Lemma, so has dimension precisely d. Finally, since f−1(y)∩Xi is closed
in the irreducible f−1(y), it follows that f−1(y) ⊂ Xi for all y ∈ f(Xi).
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If f(Xi) = Y , then it follows that f−1(Y ) ⊂ Xi, so that X = Xi is irreducible.

(c) If f is closed, then for i as in (b) we have that f(Xi) is closed and dense, so
equals Y , and we are done.

(d) Again, take i as in (b). We know that f(Xi) is dense, and if y ∈ f(Xi), then
f−1(y) ⊂ Xi. Since s(y) ∈ f−1(y), we see that s(Y ) ∩ Xi = sf(Xi) is closed
and dense in the irreducible s(Y ), so equals s(Y ). Thus f(Xi) = Y and we are
done.

4. Let Md(K) denote the variety of d× d matrices, and Cd := {(M,N) ∈
Md(K)2 : MN = NM} the commuting variety.

(a) Given M ∈ Md(K), show that ZM := {N ∈ Md(K) : MN = NM}
is a subspace, so in particular an irreducible cone. Deduce that the
map M 7→ dimZM is upper semicontinuous. Show further that its
minimal value is d, and dimZM = d if and only if M ∈ U , the set of
regular matrices (that is, those matrices whose Jordan Normal Form
has Jordan blocks with pairwise distinct eigenvalues). In particular,
U is open dense in Md(K).

(b) Set C ′d := {(M,N) ∈ Cd : N ∈ U} and let p : C ′d → Md(K) be the
projection onto the second co-ordinate. Use the previous exercise to
show that C ′d is irreducible of dimension d2 + d.

(c) As in the lectures, given (M,N) ∈ Cd there exists R ∈ U commuting
with M . Consider the morphism f : A1 → Cd, λ 7→ (M,N + λR).
Then f−1(C ′d) is non-empty open, so Im(f) ⊂ C̄ ′d. Hence C ′d is dense
in Cd, so Cd is irreducible of dimension d2 + d.

Proof. (a) Clearly N,N ′ ∈ ZM and λ ∈ K implies N + λN ′ ∈ ZM . Thus ZM is
a subspace. Moreover, the set Cd is closed in Md(K)2. Thus the Cones Theorem
implies M 7→ dimZM is upper semi-continuous.

As in the lectures, if M = Jr(λ) is a Jordan block, then ZM consists of those
upper-triangular matrices N which are constant on each diagonal. For example

M =


λ 1 0 0
0 λ 1 0
0 0 λ 1
0 0 0 λ

 commutes with N =


a b c d
0 a b c
0 0 a b
0 0 0 a

 .

A direct proof: clearly ZM = ZJ , where J = Jr(0) = E12 + E23 + · · ·+ Er−1r.
Thus (NJ)ij = Nij−1 and (JN)ij = Ni+1j . Thus N is constant on all diagonals,
and zero if j < i.

Thus, dimZM = r. In general, writing M ∈ Md(K) in Jordan Normal Form,
we see that dimZM ≥ d. On the other hand, if M is diagonal with distinct
eigenvalues, then it is easy to see that ZM is the set of all diagonal matrices, so
dimZM = d. Thus d is the generic value, and {M : dimZM = d} is open.

We still need to check that this is precisely the set U of regular matrices. Suppose
M = Jr(λ) ⊕ Js(µ). If λ = µ, then M commutes with the elementary matrix
E1,r+1. Hence if M does not have distinct eigenvalues, then dimZM > d.
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If λ 6= µ, then only the zero matrix satisfies Jr(λ)N = NJs(µ). For, take (i, j)
such that nij 6= 0 and all entries below and to the left are zero. Then the (i, j)
entry in Jr(λ)N −NJs(µ) is (λ−µ)nij . Thus if M in Jordan Normal Form has
distinct eigenvalues, then every N ∈ ZM has the same block-diagonal form, and
hence dimZM = d.

This shows that {M : dimZM = d} = U is the set of regular matrices.

A much better way of thinking about this is that each matrix M deter-
mines a module for K[t], and the space ZM equals EndK[t](M). Now
a Jordan block M = Jr(λ) gives the module K[t]/(t − λ)r, which is
uniserial with all composition factors isomorphic to the simple module
K[t]/(t − λ). Thus HomK[t](K[t]/(t − λ)r,K[t]/(t − µ)s) is zero unless
λ = µ, in which case it has dimension min{r, s}.

(b) Clearly want the projection onto the second co-ordinate. (I changed the
order to align with what was done in the lectures, but obviously forgot to change
‘first’ to ‘second’.

We have the morphism p : C ′d → U . This has a section s(N) = (0, N), and the
fibres are all vector spaces of dimension d, so are irreducible. Now U is open
dense in Md(K), so is irreducible of dimension d. Thus by Q3 we know that C ′d
is irreducible, and of dimension d2 + d by the Main Lemma.

(c) Consider g : K → Md(K), t 7→ R + tN . Then 0 ∈ g−1(U), so g−1(U) is
non-empty open, hence dense. Also, if t ∈ K×, then R + tN ∈ U if and only
if N + t−1R ∈ U . Now consider h : K → Md(K), t 7→ N + tR. It follows that
h−1(U) is again non-empty open, so dense.

Using this we see that f−1(C ′d) is non-empty open, and is disjoint from the

open f−1(Cd − C
′
d). By irreducibility we deduce that the latter is empty, so in

particular (M,N) = f(0) lies in C
′
d. Thus Cd = C

′
d is irreducible of dimension

d2 + d.
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