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Lectures: W. Crawley-Boevey
Exercises: A. Hubery

Solutions 6

Throughout K will be an algebraically closed field.

1. Let an algebraic group G act on a variety X, and assume that a geo-
metric quotient π : X → X/G exists.

(a) Given a point x ∈ X, we have the action ρx : G → X, g 7→ gx. We
therefore get maps on tangent spaces

g
d(ρx)−−−→ TxX

(dπ)x−−−→ TGxX/G.

Show that the composition is zero.

(b) Show that
T(u,v)(U × V ) ∼= TuU × TvV

for any varieties U, V .

(c) Now suppose that π is Zariski locally trivial. Deduce that (dπ)x is a
cokernel for d(ρx), so we have a natural isomorphism

TxX/ Im(d(ρx))
∼−→ TGxX/G.

Proof. (a) By the chain rule we have d(πρx)1 = dπxd(ρx). On the other hand,
πρx is the constant map g 7→ π(x), so its derivative is zero.

(b) Let A, B be two K-algebras, with maximal ideals m, n respectively. Then
m⊗B+A⊗n is a maximal ideal of A⊗KB. We have the algebra homomorphism
A→ A/m ∼= K, a 7→ am, and similarly for B, and hence also A⊗K B → K.

We claim that Der(A⊗B,K) ∼= Der(A,K)×Der(B,K).

Given a derivation ξ of A ⊗ B, we get a derivation of A by composing with
the algebra homomorphism A → A ⊗ B, and similarly for B. Conversely,
given derivations α, β of A and B, we get a derivation of A ⊗ B by taking
a⊗ b 7→ amβ(b) + α(a)bn. These maps are mutually inverse, proving the result.

An easier way of seeing this is to introduce the algebra K[ε] = K[t]/(t2). Then
we have a bijection Der(A,K) ∼= HomK−alg(A,K[ε]) sending a deriviation α to
the algebra homomorphism a 7→ am + α(a). The claim then follows from the
bijection

HomK−alg(A⊗B,K[ε]) ∼= HomK−alg(A,K[ε])×HomK−alg(B,K[ε]).

Using this we see that T(u,v)(U ×V ) ∼= TuU ×TvV . For, we may first replace U
and V by open affine neighbourhoods of u and v (by 3.8 Lemma C), and then
apply the above isomorphism.



(c) Assume that π is Zariski locally trivial. Given x ∈ X we can find an open
(affine) neighbourhood V of Gx such that π−1(V ) ∼= G× V . Since all points of
G look the same, we may further assume for simplicity that x corresponds to
the point (1, v) ∈ G× V . Now TxX ∼= g× TGx(X/G).

The action map ρx is then G → G × V , g 7→ (g, v). Its derivative d(ρx) corre-
sponds to (id, 0) as a map g→ g×TGx(X/G). The morphism π corresponds to
the second projection, so its derivative is (0, id). Thus dπx induces an isomor-
phism TxX/ Im(d(ρx))

∼−→ TGx(X/G).

2. Consider the Grassmannian Gr(M,d) = Inj(Kd,M)/GLd(K). Let
θ ∈ Inj(Kd,M) have image U .

(a) Show that Tθ Inj(Kd,M) ∼= Hom(U,M).

(b) Choose a cokernel φ : M →M/U for θ. Show that the map

Tθ Inj(Kd,M)→ Hom(U,M/U), θ′ 7→ φθ′,

is a cokernel for the map d(ρθ) : End(Kd)→ Tθ Inj(Kd,M).

(c) Deduce that TU Gr(M,d) ∼= Hom(U,M/U).

Proof. (a) Inj(Kd,M) is open in Hom(Kd,M), which is just affine space. Thus
Tθ Inj(Kd,M) = Hom(Kd,M), which is isomorphic to Hom(U,M) via θ : Kd ∼−→
U .

(b) We use Lemma 3.8 E. We have the morphism ρθ : GLd(K)→ Hom(Kd,M),
g 7→ θg−1. Given γ ∈ g = End(Kd), we have (1 + γε)(1 − γε) = 1 − γ2ε2, so
(1 + γε)−1 = 1− γε+O(ε2), and hence

ρθ(1 + γε) = θ(1− γε) +O(ε2) = θ − θγε+O(ε2).

Hence d(ρθ)(γ) = −θγ.

We thus have the (injective) map d(ρθ) : End(Kd) → Hom(Kd,M), γ 7→ −θγ.
On the other hand, we have the short exact sequence

0→ Kd θ−→M
φ−→M/U → 0

and applying Hom(Kd,−) gives the short exact sequence

0→ End(Kd)→ Hom(Kd,M)→ Hom(Kd,M/U)→ 0.

Thus Hom(Kd,M)→ Hom(Kd,M/U), h 7→ φh is a cokernel for d(ρθ).

Again, identifying θ : Kd ∼−→ U , we can write this as Hom(U,M)→ Hom(U,M/U).

(c) Using the previous exercise (which is allowed since Inj(Kd,M)→ Gr(M,d)
is Zariski locally trivial), we obtain

TU Gr(M,d) ∼= Hom(U,M/U).
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Such computations become easier in the language of functors. Each com-
mutative K-algebra A yields a (covariant) functor R 7→ HomK−alg(A,R)
from the category of commutative K-algebras to the category of sets. If
R = K, then we just get back the points of SpecA, but now we have
more flexibility. For GLd(K), we have the functor R 7→ GLd(R), which
is those matrices g ∈ Md(R) such that det(g) is a unit in R. Similarly
Inj(Kd,Km)(R) consists of those matrices θ ∈ Mm×d(R) such that all
d-minors generate the unit ideal.
The natural map K[ε] → K induces a map HomK−alg(A,K[ε]) →
HomK−alg(A,K), so a map SpecA(K[ε])→ SpecA(K) = SpecA. Then
Tp SpecA is identified with the fibre over p of this map.
If f : A → B, corresponding to φ : SpecB → SpecA, then we get the
commutative square

SpecB(K[ε]) SpecB(K)

SpecA(K[ε]) SpecA(K)

and the differential dφq for q ∈ SpecB is the induced map on fibres.
In our example, we have θ ∈ Inj(Kd,M) and the map ρθ : GLd(K) →
Hom(Kd,Km). Thus the map

GLd(K[ε])→Mm×d(K[ε]), 1 + γε 7→ θ(1− γε),

using that 1− γε is really the inverse of 1 + γε in GLd(K[ε]).

3. More generally, consider a quiver Grassmannian GrA(M,d), where A
is a K-algebra and M is an m-dimensional A-module.
Set InjA(Kd,M) to be those θ ∈ Inj(Kd,M) such that φaMθ = 0 for
all a ∈ A, where φ is a cokernel for θ, and aM ∈ EndK(M) is the map
m 7→ a ·m.

(a) Show that if θ ∈ InjA(Kd,M) has image U , then aM restricts to an
endomorphism of U , so that U ≤M is an A-submodule.

(b) For I ⊂ {1, . . . ,m} of size d, let ∆I be the corresponding d-minor
on Hom(Kd,M) (so the determinant of the d× d-matrix having rows
from I), and UI = D(∆I) the corresponding distinguished open affine.
Show that InjA(Kd,M)∩UI is closed in UI . Deduce that InjA(Kd,M)
is a closed subset of Inj(Kd,M).

(c) Show that GrA(M,d) = InjA(M,d)/GLd(K) is a geometric quotient,
and that InjA(M,d)→ GrA(M,d) is Zariski locally trivial.

(d) Deduce that TU GrA(M,d) ∼= HomA(U,M/U).

Proof. (a) Given u ∈ U , write it as θ(v) for some v ∈ Kd. Then φ(aM (u)) =
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φaMθ(v) = 0, so that aM (u) ∈ Ker(φ) = U .

Alternatively, since φaMθ = 0 we know that there is a unique a′M ∈ End(Kd)
such that aMθ = θa′M . These a′M then determine an algebra homomorphism
A→ End(Kd).

(b) Observe that Inj(Kd,M) =
⋃
I UI , since a matrix is injective if and only if

it has rank d, if and only if some d-minor is invertible.

Now UI ∼= GLd(K)×M(m−d)×d(K), by rearrranging rows. Given(
g

h

)
∈ GLd(K)×M(m−d)×d(K) ⊂Mm×d(K),

this has cokernel

(−hg−1, 1) ∈M(m−d)×d(K)×GL(m−d)(K) ⊂M(m−d)×m(K),

and rearranging columns we obtain a map ΦI : UI → Hom(M,K(m−d)) such
that ΦI(θ) is a cokernel for θ ∈ UI .
Observe that each InjA(Kd,M) ∩ UI = {θ : ΦI(θ)aMθ = 0 for all a ∈ A} is
closed in UI . Thus InjA(Kd,M) is closed in

⋃
I UI = Inj(Kd,M).

(c) We know that πI : UI → VI := π(UI) is a trivial GLd(K)-bundle. Set
UAI := InjA(Kd,M) ∩ UI . This is closed and GLd(K)-stable in UI , so its im-
age V AI is closed in VI . The isomorphism UI ∼= GLd(K) × VI thus restricts
to an isomorphism UAI

∼= GLd(K) × V AI . This shows that the restriction
InjA(Kd,M) → GrA(M,d) is a Zariski locally trivial GLd(K)-bundle, and in
particular it is a geometric quotient.

(d) Recall the map Φ: GLd(K)×Hom(Kd,Km−d)→ Hom(M,Km−d), (g, h) 7→
(−hg−1, 1). Identifying UI with GLd(K) × Hom(Kd,Km−d), the matrix aM
corresponds to a block matrix

(
p q
r s

)
, and the closed subset UAI corresponds to

those (g, h) such that (−hg−1, 1)
(
p q
r s

)(
g
h

)
= 0.

For simplicity, we may assume that θ = (1, 0), so that φ = (0, 1), in which case
r = 0. Now (γ, ν) lies in the tangent space provided

(−νε(1− γε), 1)

(
p q
0 s

)(
1 + γε

νε

)
= O(ε2),

equivalently sν = νp. Since the block p gives the action of a ∈ A on U ,
and the block s gives the action of a on M/U , we see that Tθ InjA(Kd,M) ∼=
g×HomA(U,M/U), and hence that TU GrA(M,d) ∼= HomA(U,M/U).

More precisely, we have computed the tangent space TSθ InjA(Kd,M)
where S is the collection of polynomials coming from ΦI(θ)aMθ = 0 for
a a (finite) set of generators for A. We haven’t shown that this yields a
space with functions, since there may be some further functions which
vanish on InjA(Kd,M), so in the radical of the ideal (S). This will in
general be the case.
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4. Let A = KQ be the path algebra of a quiver, and M a finite dimen-
sional A-module.

(a) Using the long exact sequences for hom, show that if Ext1(M,M) = 0
and U ≤ M is a submodule, then Ext1(U,M), Ext1(M,M/U) and
Ext1(U,M/U) all vanish.

(b) Use the Ringel form to deduce that dim HomA(U,M) depends only on
the dimension vectors of U and M .

(c) Deduce that GrA(M,d) is smooth.

Proof. (a) We have 0 → U → M → M/U → 0. Since A = KQ is hereditary,
applying Hom(M,−) gives an epimorphism Ext1(M,M) � Ext1(M,M/U),
and applying Hom(−,M) gives an epimorphism Ext1(M,M) � Ext1(U,M).
Applying Hom(U,−) gives an epimorphism Ext1(U,M) � Ext1(U,M/U).

Thus, if Ext1(M,M) = 0, then Ext1(U,M), Ext1(M,M/U) and Ext1(U,M/U)
all vanish.

(b) We have

dim Hom(U,M) = 〈dimU,dimM〉+ dim Ext1(U,M) = 〈dimU,dimM〉.

(c) For a fixed dimension vector d, the tangent spaces of GrA(M,d) all have the
same dimension. This is not enough to deduce smoothness, however, since we
have not actually computed the tangent space of the space with functions; just
as for InjA(Kd,M) we computed the possibly larger TSθ InjA(Kd,M), what we
have computed here is the equivalent for the geometric quotient.

We can recover the smoothness result as follows. Let A be a finitely
generated K-algebra, m a maximal ideal, and A → A/m ∼= K the
quotient map. Recall that the tangent space Tp SpecA at the point
p corresponding to m is the fibre over HomK−alg(A,K[t]/(t2)) →
HomK−alg(A,K). We say that p (or the local ring Am) is (for-
mally) smooth provided for each n ≥ 2, the image of the map
HomK−alg(A,K[t]/(tn)) → HomK−alg(A,K[t]/(t2)) contains all points
in the tangent space Tp SpecA.

N.B. For a local ring, formally smooth implies regular, but the converse
is false in general. For example, if L/K is a finite purely inseparable field
extension, then L is regular, but L/K is not formally smooth, and after
base change L⊗K L contains nilpotents so will no longer be regular.
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If we fix θ ∈ InjA(Kd,M), then as in the previous question we may
assume that θ = (1, 0), its cokernel is φ = (0, 1), and a ∈ A acts as(
a′ ā
0 a′′

)
. To compute the tangent space we took (1+γε, νε) with cokernel

(−νε, 1), and obtained the equations a′′ν = νa′ for all a ∈ A. We are
now considering elements in K[t]/(tn+1). Thus we take (1,

∑
i νit

i), with
cokernel (−

∑
i νit

i, 1). The equations then become

a′′νi − νia′ =
∑
i=j+k

νj āνk for all i and all a ∈ A.

We consider the map

φ0 : Hom(Kd,Km−d)→ Hom(A,Hom(Kd,Km−d)),

ν 7→
(
a 7→ a′′ν − νa′

)
.

If the elements
∑
i=j+k νj āνk always lie in the image of φ0, then

we can inductively define νi, and hence the image of the map
HomK−alg(A,K[t]/(tn+1)→ HomK−alg(A,K[t]/(tn)) contains all points
in the fibre over p, for all n. Thus p will be a smooth point.
As in 4.1 Lemma D we have the A-bimodule HomK(U,M/U), and
the map φ0 we just constructed is the zeroth map in the Hochschild
complex. Now H1(A,Hom(U,M/U)) ∼= Ext1

A(U,M/U), which vanishes
when Ext1(M,M) = 0. Also, consider some ξ :=

∑
i=j+k νj āνk. Then

φ1(ξ)(a⊗ b) = a′′ξ(b)− ξ(ab) + ξ(a)b′. Since the A-action comes from an
algebra homomorphism we have ab = a′b̄+ āb′′. Thus

φ1(ξ)(a⊗ b) =
∑
i=j+k

(a′′νj − νja′)b̄νk −
∑
i=j+k

νj ā(b′′νk − νkb′).

By induction on i we have

a′′νj − νja′ =
∑
j=p+q

νpāνq and b′′νk − νkb′ =
∑
k=p+q

νpb̄νq.

Thus

φ1(ξ)(a⊗ b) =
∑

i=j+k+l

νj āνkp̄νl −
∑

i=j+k+l

νj āνk b̄νl = 0.

So each element ξ lies in Ker(φ1) = Im(φ0), and we deduce that each
point p is smooth. Thus InjA(Kd,M) is smooth, and hence so too is the
quiver Grassmannian GrA(Kd,M).
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5.

(a) Consider the surjective morphism φ : V (t2 − xt+ y)→ A2, (x, y, t) 7→
(x, y). For which q ∈ V (t2−xt+y) is the differential (dφ)q surjective?

(b) Suppose charK = p > 0 and consider the surjective morphism
θ : A1 → A1, x 7→ xp. Compute the differential (dθ)q.

Proof. (a) We first compute TqV . Consider q+ rε. Writing q = (q1, q2, q3), and
similarly for r, we compute

(q3 + r3ε)
2 − (q1 + r1ε)(q3 + r3ε) + (q2 + r2ε)

= (q2
3 − q1q3 + q2) + (2q3r3 − q1r3 − q3r1 + r2)ε+O(ε2).

We know that q ∈ V , so the first summand vanishes, and so TqV consists of
those r such that (2q3 − q1)r3 = q3r1 − r2.

We now compute the differential dφq. Since φ is just the restriction of the
projection map, dφq is the projection (r1, r2, r3) 7→ (r1, r2).

So, the differential is onto if and only if, given (r1, r2) we can solve for r3, which
is if and only if (2q3 − q1) 6= 0. So the differential is onto at all points q with
2q3 6= q1, equivalently those q not of the form (2a, a2, a).

This shows that, even in very nice situations, the differential will in
general not be surjective at all points, but only on a dense open subset.

(b) Here we have both tangent spaces being K. To compute the differential,
take q+rε. This is sent to (q+rε)p = qp+O(ε2), so the differential is identically
zero at all points.

The corresponding map of function fields is the inseparable field exten-
sion K(tp) ⊂ K(t). This shows that we need some separability hypothe-
sis in order to conclude that the differential is surjective on a dense open
set.
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