Non-commutative Algebra 3, SS 2020

Lectures: W. Crawley-Boevey
Exercises: A. Hubery

Solutions 7

Throughout K will be an algebraically closed field. Recall the degeneration
order M < N provided Oy C Oyy.

1. Let A = K[z,y]/(2%,y?), and let M; be the two-dimensional module
where the z and y actions are given by

Mt(:c)<(1) 8) o] Mt(y)<(t) 8)

(a) Let V C Mod(A,4) be the subset consisting of the modules My & M,
so pairs of matrices
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Consider the morphism
0: GL4(K) x V — Mod(A4,4),

given by the restriction of the usual GL4(K) action on Mod(A,4).
Show that GL4(K) x V is irreducible and has dimension 18.
Show further the generic fibre of 8 over the image has dimension 6 (it is

the Zariski dimension of Aut(M; @ M,), equivalently the K-dimension
of End(M; & M), for s # t).

Deduce that Im(#) is irreducible of dimension 12.
(b) Show that the orbit closure O 4 is irreducible of dimension 12.

(¢c) Deduce that there is some s,¢ such that A does not degenerate to
M ® M.

Proof. (a) We have the isomorphism A2 =5 V' (s,t) — M, @ M,;. The inverse
is given by the projection onto the relevant entries of the second matrix. Thus
V is irreducible of dimension 2, so GL4(K) x V is irreducible of dimension 18.

For s # t the fibre of 8 over M, & M, is Aut(M; @ M) U Aut(M; & M;)o, where
o is the permutation matrix corresponding to (13)(24). This has dimension
dim End(My & M,;). (For s = t we just have Aut(M2), which has dimension
dim End(M?2) = 4dim End(M,).)



Now End(M,) consists of matrices of the form (29), and if s # ¢, then

Hom(M,, M;) consists of matrices of the form (9§). Thus away from the di-

agonal, so for s # t, the endomorphism algebra has dimension 6 (and on the
diagonal it has dimension 8).

By the Main Lemma on fibre dimension, we deduce that Im(6) has dimension
18 -6 =12.

(b) We have End(A) = A, so has dimension 4. Using Theorem 5.1 we see that
the orbit closure O 4 is irreducible of dimension 16 — 4 = 12.

(¢c) We know that A is not isomorphic to any My @& M, (for example the en-
domorphism algebras have different dimensions). Thus Im(0) N O4 is disjoint
from the open dense Q4. Since the orbit closure is irreducible, the proper closed
subset O 4 — O 4 has dimension strictly smaller than 12.

Thus if Im(#) C O, then Im(#) is contained in O4 — O4, a contradiction by
dimensions. Thus there must exist some s,t such that A does not degenerate
to My & M. O

2. Let A be a finite dimensional algebra, and (‘Z): X > Mo X a
monomorphism.

(a) Show that f; := b+t¢-idx is an automorphism of X for all but finitely
many t € K.

b) Set M, := Coker({). Deduce that M; = M for all but finitely many
It
te K.

(¢) Deduce that M < M.

Proof. (a) We know that b + ¢ - idyx is not invertible if and only if —¢ is an
eigenvalue of b.

(b) If f; is invertible, then (}lt) is a split mono, with retract (0, f;'): M ® X —
X. In this case My = M.

(c) Let T C K consist of those ¢ for which (;) is injective. In particular, T is
open and contains 0. '

As for Grassmannians (for example Exercise 6.3), we have the injective maps (}lt)

for t € T. Choose a set I of columns such that the I-minor Aj ('Z) is non-zero.
We then replace T' by the non-empty open subset of K containing those ¢ for
which Ay (J?t) is non-zero. We can then construct a linear map 6: K™ — M & X,
where m = dim M, and a morphism ®: T'— Homg (M & X, K™) (m = dim M)
such that ®(t) is a cokernel of (;ft), and ®(t)0 =id, for all t € T.

We now obtain a morphism A\: T — Mod(A,m). For, given a € A, we have
the endomorphism & of M & X. Then A(t) sends a € A to oy = ®(t)ab.
Note that a; is the unique endomorphism «; such that a;®(¢) = ®(¢)a, so the
corresponding module is isomorphic to the cokernel of (]‘}t)

Thus A(t) is isomorphic to M; for all ¢ € T, so is isomorphic to M for almost
all t € T, and hence M degenerates to M. O



3. Let k = F, be a finite field with ¢ elements. Set ANy to be the set
of all nilpotent matrices in My(k). In this question we want to prove
IVg| = gD,

Recall that every matrix M € My(K) determines a K[T]-module of
dimension d, by letting T act as M. Then, given M, M’ € My(K), we
have

HOI’HK[T](M, M’) = {9 € Md(K) :O0M = M’H}

Set N = J4(0) to be the Jordan block

0
1 0
N: =10 1
0
1 0

and consider the set Sy of pairs (A,0) such that A € Ny and 6 €
HomK[T] (N, A)

(a) Show that for every nilpotent matrix A we have dim Hom g 7}(N, A) =
d. Thus the projection S; — Ny on to the first co-ordinate is surjective
and every fibre has size ¢?. In other words, |Sg| = ¢%|Ny|.

(b) Now consider the projection S — Mg4(K) on to the second co-
ordinate. Show that the fibre over § has the same size as the fibre
over gf for every g € GL4(K). Thus we may assume that 6 is in
row-reduced form.

(c) Take (4,0) € Sy. Since ON = Af, we know that N(Ker()) C Ker(0).
Assuming 6 is in row reduced form, show that we must have § = E,. :=

(I(; 8), where I, € M,.(K) is the identity matrix and r = rank 6.

(d) Show that for § = E,., the number of nilpotent matrices A for which
ON = Af is ¢"(“~")|Ny_,|. By induction this equals ¢(*~1D(¢=") for
r > 0.

(e) Show that the number of # which have row reduced form E, is (¢¢ —

D(g*—q)---(¢*—q"").

(f) It follows that

[Sal = Ial =Y (¢ = 1)(g* — @) -+ (¢% — ¢""1)g!* D=,
>0

Prove that this equals (¢* — 1)¢*¢~1, and hence that [Ny| = ¢*(¢—1.

Proof. (a) As a K[T]-module we have N = K[T|/(T%). So Homgr(N,A) is
in bijection with those x € K¢ such that A%(z) = 0. Since A is nilpotent, we
have A% = 0, and hence we can take any € K% Thus Homgr)(N, A) has
dimension d.



(b) The fibre over @ consists of those nilpotent matrices A for which A9 = ON.
Thus conjugation by g yields a bijection between the fibre over 6 and the fibre
over gf.

(c) Let 6 is a morphism from K[T]/(T%) to A. Then 1 is sent to the first column
v of 8, and T?~ ! is sent to the i-th column, which must therefore equal A"~ 1v.
Thus 0 = (v, Av, A%v, ..., A% 1v). In particular, if the i-th column is zero, so
too is every column to the right.

Now assume that 6 # 0 is in row-reduced form. Then v # 0, so v = e;3.

Take r minimal such that A"v = 0. Suppose A’v is contained in the span

of v,Av,..., A" lv. Applying A"~' we see that the coefficient of v is zero.

Applying A2 we get that the coefficient of Av is zero. Continuing we see that

all coefficients are zero, and hence A’v = 0.

Thus if A’v # 0, then we must have that A’v = e;. It follows that § = E,..

(d) Suppose AE, = E,.N. Now E,.N = (Jréo) 8), whereas AF, is just the first

r columns of A. Thus A = (‘]Téo) f, ) Then A is nilpotent if and only if A’ is

nilpotent, so we have a bijection between the fibre over £, and M., (q—)(K) x

N,

If r > 0, then d—7 < d, so by induction this fibre has size ¢"(¢—7) gld=r)(d=r=1) —
(d—r)(d—1)

q .

(e) A matrix € has row reduced form F, if and only if the first r columns are
linearly independent, and the remaining columns are zero. Thus the number of

such 0 is (¢ — 1)(¢" —q) - (¢’ —¢"7").
(f) The fibre over the zero matrix is of course My. This gives the formula for
|Sa| — |Nag|. We rewrite this as

(@" =1 (¢" =) (g =g Mg V.
r>0

Consider the set My, q—1)(K). We partition these matrices as follows. Given
r > 0, take those matrices whose i-th column is not in the span of ey, ..., e; for
i < r, the r-th column is in the span of eq,...,e,, and the remaining columns
are arbitrary. There are (¢¢ —q)--- (¢% — q’“_l)q(d_l)(d_’“) such matrices. Also,

every matrix lies in precisely one of these subsets: we take » minimal such that

the r-th column lies in the span of eq,...,e,.. This shows that
Z(qd _ q) . (qd _ qr—1>q(d—1)(d—r) — qd(d—l)-
r>0
Now combine with the formula |Sy| = ¢?|Ny| to deduce |Ny| = ¢?4=1. O



4. Fix a finite dimensional A-module X. We want to show that for each ¢,
the map Y +— dim Ext’(X,Y") is upper semi-continuous on Mod(A4, d).
We fix a free resolution of X,

oy AT L2y g I g X 0,
We also set
CU,V,W):={(0,9): 0 =0} C Hom(U, V) x Hom(V, W).
In the lectures we saw that the function
cu,v,W)—=12, (6,¢)— dim(Ker(¢)/Im(0))
is upper semi-continuous.

(a) We fix a surjective algebra homomorphism K(py,...,p;) - A. Then
Mod(A,d) € My(K)*. Given a € A, lift it to a non-commutative
polynomial o € K(p1,...,px). Right multiplication by a gives a map
Pa: A— A
Now let (y1,...,yx) € Mod(A, d), corresponding to a d-dimensional A-
module Y. Show that, under the standard identification Hom(A,Y") &
Y, the induced homomorphism p*: Hom(A4,Y) — Hom(A4,Y) corre-
sponds to the linear map o(yy,...,yx): K¢ — K9

(b) A homomorphism f: A® — A" corresponds to a matrix (f;;) €
M, «s(A). We lift each f;; to a non-commutative polynomial
fi; € K(pi,...,pk)- Show that the induced homomorphism
fy: Hom(A",Y) — Hom(A®Y) corresponds to the block matrix

(fig (1, - yw)) s (K — (K9).

(¢) Deduce that for each i there is a morphism of varieties
MOd(A’ d) - C(KdTFl ) K ) K9t )’ Y — ((fl)?ﬁ (ferl);/)

Conclude that the function ¥ — dimExt‘(X,Y) is upper semi-
continuous on Mod(4, d).

Proof. (a) Under the usual identification Hom(A,Y) = Y, the map p’ cor-
responds to left multiplication by a on Y. Next we have algebra generators
ai,...,ag, given by the images of p1,...,px. Thus a = «a(aq,...,ax). Finally,
a; acts on Y as y;, so a acts on Y as a(y1,...,Yk)-

(b) Asin (a), the map f; corresponds to left multiplication on Y by the matrix
f, and so by the block matrix (f;;(y1,...,Yx)).

(c) Choosing representatives for the matrices f;, fi+1, we obtain the morphism
Mod (A, d) — C(Hom(A™ 1Y), Hom(A"™,Y),Hom(A" ™ Y)).

The homology of this is Ext(X,Y), and so the function ¥ — dim Ext'(X,Y)
is upper semi-continuous. O



