
Non-commutative Algebra 3, SS 2020

Lectures: W. Crawley-Boevey
Exercises: A. Hubery

Solutions 8

Throughout K will be an algebraically closed field. Recall that we have three
partial orders on Mod(A, d).

Ext M ≤ext N if there exists a sequence M = M0,M1, . . . ,Mn = N and short
exact sequences

0→ L′i →Mi−1 → L′′i → 0, Mi
∼= L′i ⊕ L′′i .

Deg M ≤deg N if N ∈ OM .

Hom M ≤hom N if dim Hom(X,M) ≤ dim Hom(X,N) for all finite dimen-
sional A-modules X.

We saw in the lectures that M ≤ext N implies M ≤deg N implies M ≤hom N .

1. Let A be a (finite dimensional) K-algebra, and M,N ∈ Mod(A, d).

(a) Show that for finite dimensional A-modules M,N we have M ∼= N
if and only if dim Hom(X,M) = dim Hom(X,N) for all finite dimen-
sional A-modules X.

Hint. We may proceed as follows. Take a basis f1, . . . , fd for
Hom(M,N). Use these to construct a morphism f : M → Nd, and
show that the induced map Hom(Nd, N) → Hom(M,N) is onto. De-
duce that the map Hom(Nd,M)→ End(M) is onto, and hence that f
is a split monomorphism. By Krull-Remak-Schmidt, M and N have a
common direct summand. Finish by induction on dimM .

(b) Given a minimal projective presentation Q→ P → X → 0, show that

dim Hom(X,M)−dim Hom(M, τX) = dim Hom(P,M)−dim Hom(Q,M).

Deduce that M ≤hom N if and only if dim Hom(M,X) ≤
dim Hom(N,X) for all finite dimensional A-modules X.

Hint. We have the (minimal) projective presentation P∨ → Q∨ →
TrX → 0 as right A-modules, where P∨ := Hom(P,A). Now tensor
with M to obtain an exact sequence

0→ Hom(X,M)→ Hom(P,M)→ Hom(Q,M)→ DHom(M, τX)→ 0.

Proof. (a) Given h : M → N we can write h =
∑

i λifi for some λi ∈ K. Then
the map Hom(Nd, N) → Hom(M,N) sends (λi · idN ) to h, proving that f∗ is
onto.



We have an exact sequence M
f−→ Nd → C → 0. Applying Hom(−, N) yields

the short exact sequence

0→ Hom(C,N)→ Hom(Nd, N)→ Hom(M,N)→ 0.

Applying Hom(−,M) yields the exact sequence

0→ Hom(C,M)→ Hom(Nd,M)→ End(M).

Comparing dimensions we see that Hom(Nd,M)→ End(M) is onto, and hence
that f is a split mono. By KRS M and N have a common direct summand
T . Writing M = M ′ ⊕ T and N = N ′ ⊕ T , we see that dim Hom(X,M ′) =
dim Hom(X,N ′) for all X. By induction on dimM we deduce that M ′ ∼= N ′,
and hence that M ∼= N .

(b) Since P is a finitely generated projective we know that

P∨ ⊗M = Hom(P,A)⊗A M ∼= Hom(P,M).

Also,
Hom(M,DY ) ∼= Hom(Y ⊗M,K) = D(Y ⊗M),

so taking duals again we get TrX ⊗M ∼= DHom(M, τX). Since the kernel of
Hom(P,M)→ Hom(Q,M) is Hom(X,M), we get the required four term exact
sequence. Rearranging thus gives

dim Hom(X,M)− dim Hom(M, τX) = dim Hom(P,M)− dim Hom(Q,M).

If M ≤hom N , then dim Hom(Ae,M) ≤ dim Hom(Ae,N), so dim eM ≤ dim eN ,
for all idempotents e ∈ A. Since dimM = dimN , we deduce that dim eM =
dim eN for all idempotents e. Hence dim Hom(P,M) = dim Hom(P,N) for all
finitely generated projectives P . Dually, dim Hom(M, I) ≤ dim Hom(N, I) for
all finitely generated injectives I.

From the first part, dim Hom(M, τX) ≤ dim Hom(N, τX) for all X. Since every
finite dimensional module is of the form τX ⊕ I for some X and some injective
I, it follows that dim Hom(M,Y ) ≤ dim Hom(N,Y ) for all Y .

The other implication is analogous.

2



2. Consider the path algebra KQ, where Q is the quiver

1 3 2

(a) Show that this has Auslander-Reiten quiver

P1 S2

S3 I3

P2 S1

(b) Consider a finite dimensional module M . By the Krull-Remak-
Schmidt Theorem, we can write

M ∼= Sa
3 ⊕ P b

1 ⊕ P c
2 ⊕ Id3 ⊕ Se

2 ⊕ S
f
1 ,

and so we can use the shorthand M ↔ (a, b, c, d, e, f).

Compute the dimension vector dimM .

Compute dim Hom(X,M) as X runs through all six indecomposable
modules.

(c) Suppose dimM = dimN with N ↔ (a′, b′, c′, d′, e′, f ′). Write
out the conditions that M ≤hom N , that is, dim Hom(X,M) ≤
dim Hom(X,N) for all six indecomposable modules X.

(d) Using the three Auslander-Reiten sequences

0→ S3 → P1 ⊕ P2 → I3 → 0

and
0→ P1 → I3 → S2 → 0 0→ P2 → I3 → S1 → 0

show that M ≤hom N implies M ≤ext N .

Proof. (a) Simple knitting.

(b) We have dimM = (b+ d+ f, a+ b+ c+ d, c+ d+ e).

dim Hom(S3,M) = a+b+c+d, dim Hom(P1,M) = b+d+f , dim Hom(P2,M) =
c+ d+ e.

dim Hom(I3,M) = d+ e+ f , dim Hom(S2,M) = e, dim Hom(S1,M) = f .

(c) Given that they have the same dimension vector, the conditions become
e ≤ e′, f ≤ f ′ and d+ e+ f ≤ d′ + e′ + f ′.

(d) Set δ := (e′− e) + (f ′− f) + ((d′+ e′+ f ′)− (d+ e+ f)) = (d′− d) + 2(e′−
e) + 2(f ′ − f) ≥ 0.

Suppose d > d′. Then (e′ − e) + (f ′ − f) > 0. If f ′ > f , then we can use
0→ P2 → I3 → S1 → 0 to get M ≤ext M

′ with M ′ ↔ (a, b, c+1, d−1, e, f+1).
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Now M ′ ≤hom N , and by induction on δ we know that M ′ ≤ext N . Similarly if
e′ > e.

Suppose instead that d < d′. Then b+d+f = b′+d′+f ′, so b−b′ = (d′−d)+(f ′−
f) > 0, and similarly c− c′ > 0. We can then use 0→ S3 → P1 ⊕ P2 → I3 → 0
to get M ≤ext M

′ with M ′ ↔ (a+ 1, b− 1, c− 1, d+ 1, e, f). Now M ′ ≤hom N ,
and again by induction on δ we get M ′ ≤ext N .

Finally, suppose d = d′. Then b−b′ = f ′−f . If this is positive, then we can use
0→ S3 → P1 → S1 → 0 to get M ≤ext M

′ with M ′ ↔ (a+1, b−1, c, d, e, f+1).
Again, M ′ ≤hom N , so by induction M ′ ≤hom N . Similarly for c− c′ = e′ − e.
This proves that M ≤hom N implies M ≤ext N .

Note also that replacing P1  S3 ⊕ S1 can be regarded as the composition
P1 ⊕ P3  S3 ⊕ I3 with I3  P2 ⊕ S1. In this sense, the Auslander-Reiten
sequences determine the partial order ≤hom.

3. Consider the algebra A = KQ/I given by the quiver

2
b

1 a

and I is the ideal generated by a2 (c.f. Exercise 6.3 last semester).
We know that this algebra is representation finite, having precisely
seven indecomposables up to isomorphism. Moreover, there are two
non-isomorphic indecomposables of dimension vector 2e1 + e2, namely

X : K

(
1
0

)
K2

(
0 0
1 0

)
and Y : K

(
0
1

)
K2

(
0 0
1 0

)
Compute End(X) and End(Y ). This again shows that X 6∼= Y .
Set

Xt : K

(
t
1

)
K2

(
0 0
1 0

)
Show that Xt

∼= X for all t 6= 0.
This proves that X ≤deg Y . Explain why X 6≤ext Y .

Proof. End(X) ∼= K.

End(Y ) ∼= K[t]/(t2), consisting of pairs of matrices
(
p,
(
p 0
q p

))
.

The pair of matrices
(
1,
(
t 0
1 t

))
determines a morphism X → Xt. This is an

isomorphism for all t 6= 0.

Since X0
∼= Y , it follows that X ≤deg Y .

Since Y is indecomposable and not isomorphic to X, we cannot have X ≤ext

Y .
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4. We introduce a new partial order by saying M ≤v.ext N (virtual exten-
sion) provided M ⊕X ≤ext N ⊕X for some finite dimensional module
X.

(a) Show that M ≤v.ext N implies M ≤hom N .

As in Exercise 7.1, let A = K[x, y]/(x2, y2), and let Mt be the two-
dimensional module where the x and y actions are given by

Mt(x) =

(
0 0
1 0

)
and Mt(y) =

(
0 0
t 0

)
.

We have shown that A 6≤deg Ms ⊕Mt for some s, t.

(b) Show that we have a short exact sequence (in fact an Auslander-Reiten
sequence)

0→ radA→ A⊕ radA/ socA→ A/ socA→ 0.

(c) Show that for all s, t we have short exact sequences

0→Ms → radA→ K → 0 and 0→ K → A/ socA→Mt → 0.

(d) Using that radA/ socA ∼= K2 deduce that

A⊕K2 ≤ext Ms ⊕Mt ⊕K2 for all s, t ∈ K,

and hence that A ≤v.ext Ms ⊕Mt.

Proof. (a) We know that ≤ext implies ≤hom and that ≤hom has cancellation, so
M ⊕X ≤hom N ⊕X implies M ≤hom N .

(b) A is four dimensional and local, with basis 1, x, y, xy. It has radical Ax+Ay,
and socle Axy.

We have the natural map A⊕ radA/ socA → A/ socA, (a, b̄) 7→ ā− b̄. This is
clearly surjective. Its kernel is (a, ā) for a ∈ radA, so is isomorphic to radA.

(c) The elements sx+ y, xy span a submodule of radA isomorphic to Ms. Sim-
ilarly, the submodule of A/ socA spanned by tx̄− ȳ has cokernel isomorphic to
Mt.

(d) We have A ⊕ K2 ≤ext radA ⊕ socA ≤ext (Ms ⊕ K) ⊕ (Mt ⊕ K). Thus
A ≤v.ext Ms ⊕Mt for all s, t ∈ K.
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5. The dominance order on partitions of n is given by λ C µ provided
λ1 + · · ·+ λi ≤ µ1 + · · ·+ µi for all i.

(a) Show that λC µ if and only if µ′ C λ′.

Hint. Suppose that µ is obtained from λ by moving a ‘bottom right
corner’ block to the next available space to the upper left. For example

×

× λ = µ =

Show that, taking dual partitions, the inverse move is of the same type,
but now from µ′ to λ′. As in the lectures, the covers in the dominance
order are all of this type.

Let λ and µ be two partitions. Their sum λ + µ is the partition
(λ1 + µ1, λ2 + µ2, . . .); their cup product λ ∪ µ is the partition given
by rearranging the parts of λ and µ into decreasing order.

(b) Show that λ′ + µ′ = (λ ∪ µ)′.

Recall that for each partition λ we have a nilpotent K[t]-module M(λ),
having Jordan blocks of sizes λ′i. In particular, M(d) is semisimple,
and M(1d) is indecomposable.

(c) Show that M(λ)⊕M(µ) ∼= M(λ+ µ).

(d) Let U ≤ M(λ) be a submodule such that dim socU ≤ r. Show that
dimU ≤ λ′1 + · · ·+ λ′r.

Hint. Show that dim soc(U/ socU) ≤ r. Show that M(λ)/ socM(λ) ∼=
M(λ≥2), where λ≥2 = (λ2, λ3, . . .). Now use U/ socU ≤ M(λ≥2) and
induction.

(e) Deduce that λ′1 + · · ·+ λ′r is the maximum dimension of a submodule
U ≤M(λ) having dim socU ≤ r.

(f) Suppose now that we have a short exact sequence

0→M(λ)→M(ξ)→M(µ)→ 0.

Use the previous part to deduce that ξ′ C λ′ + µ′, and hence that
λ ∪ µC ξ.

Proof. (a) This is clear. (The hard part is showing that the dominance order is
generated by such moves.)

(b) The number λ′i is the length of the i-th column of λ. The cup product λ∪µ
is formed by placing λ on top of µ, and then rearranging rows so that we get a
partition. It is thus clear that (λ ∪ µ)′i = λ′i + µ′i.
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(c) M(λ) ⊕M(µ) has Jordan blocks given by the entries of λ′ ∪ µ′ = (λ + µ)′,
and hence is isomorphic to M(λ+ µ).

(d) We know that K[T ]-modules are uniserial, so dim socU is precisely the num-
ber of indecomposable summands, and hence dim soc(U/ socU) ≤ dim socU .

dim socM(λ) is the number of Jordan blocks, which is λ1. In the quotient
M(λ/ socM(λ), the size of each Jordan block decreases by one. Thus this
quotient is isomorphic to M(λ≥2).

socU = U ∩ socM(λ), so U/ socU ≤ M(λ≥2). By induction on λ we have
dimU/ socU ≤ (λ′1 − 1) + · · · + (λ′r − 1), so dimU ≤ r + dimU/ socU ≤
λ′1 + · · ·+ λ′r.

(e) There is a submodule U ≤M(λ) given by the largest r Jordan blocks. This
has socle of dimension r, and total dimension λ′1 + · · ·+ λ′r.

(f) Take U ≤M(ξ) given by the largest r Jordan blocks. Then U ′ := U ∩M(λ)
has socle of dimension at most r, and the image U ′′ of U in M(µ) also has
at most r summands, so its socle is again of dimension at most r since it is
uniserial. Now dimU = dimU ′ + dimU ′′, so by the previous part we have

ξ′1 + · · ·+ ξ′r ≤ (λ′1 + · · ·+ λ′r) + (µ′1 + · · ·+ µ′r).

This holds for all r, so ξ′ C λ′ + µ′. Taking duals gives λ ∪ µC ξ.
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