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Solutions 9

Throughout K will be an algebraically closed field.

1.

(a) Consider the family of algebras At := K[x]/(x2− tx) for t ∈ K. Com-
pute gl.dimAt.

(b) Consider the family of algebras Bt := K[x, y]/(x2, y2 − ty) for t ∈ K.
For which t is Bt representation finite?

Proof. (a) For t 6= 0 we have At ∼= K[x]/(x) × K[x]/(x − t) ∼= K × K by the
Chinese Remainder Theorem. This is semisimple, so has global dimension 0.

For t = 0 we have A0
∼= K[x]/(x2), which is self-injective, so has infinite global

dimension. In fact, there are two indecomposables: A0 itself, which is projective-
injective, and the simple K. Using the short exact sequence 0 → K → A0 →
K → 0, we see that p.dimK =∞.

(b) For t 6= 0 we have Bt ∼=
(
K[y]/(y(y − t))

)
[x]/(x2) ∼= (K × K)[x]/(x2) ∼=

K[x]/(x2)×K[x]/(x2). This has four indecomposables.

For t = 0 we have B0
∼= K[x, y]/(x2, y2). We saw in Exercise 7.1 that this has

indecomposables Ms for all s ∈ K, so is representation infinite.



2. Let G be a connected algebraic group acting on a variety X. For a
G-stable constructible subset Y ⊂ X, set

Y(d) := {y ∈ Y : dimGy = d} and Y(≤d) := {y ∈ Y : dimGy ≤ d}.

We define

dimG Y := max{dimY(d)−d : d ≥ 0} and topG Y :=
∑

dimY(d)=dimG Y+d

topY(d).

Let Y, Yi ⊂ X be G-stable constructible subsets.

(a) Show that dimG(Y1 ∪ Y2) = max{dimG Y1,dimG Y2}.

(b) Show that dimG Y = max{dimY(≤d) − d : d ≥ 0}.

(c) Suppose Z ⊂ Y is constructible and meets every orbit in Y . Show
that dimG Y ≤ dimZ.

(d) Show that dimG Y = 0 if and only if Y is a finite union of G-orbits, in
which case topG Y equals the number of orbits.

(e) Define Z := {(g, x) : gx = x} ⊂ G × X}, and let π : Z → X be the
projection. Show that dimG Y = dimπ−1(Y ) − dimG. Show further
that if StabG(y) is connected for all y ∈ Y , then topG Y = topZ.

Proof. (a) We have (Y ∪Z)(d) = Y(d)∪Z(d) and dim(Y ∪Z) = max{dimY,dimZ}.
The result follows.

(b) We have dimY(d) ≤ dimY(≤d), so that dimG Y ≤ max{dimY(≤d) − d}.
On the other hand, dimY(≤d)−d = max{dimY(s)−d : s ≤ d} ≤ max{dimY(s)−
s : s ≤ d} ≤ dimG Y .

(c) The map G × Z(d) → Y(d) is onto. The fibre over y = gz is {(h, z′) : hz′ =
gz} ∼= {h ∈ G : hz ∈ Z}. The isomorphism sends h with hz ∈ Z to the
pair (gh−1, hz), and sends the pair (h, z′) to h−1g. Since z ∈ Z(d) we know
that {h : hz = z} has dimension dimG − d. Thus each fibre has dimension at
least dimG− d, so by the Main Lemma on fibre dimension, dimG+ dimZ(d)−
dimY(d) ≥ dimG − d, and hence dimY(d) − d ≤ dimZ(d). This holds for all d,
so dimG Y ≤ dimZ.

(d) Suppose Y = Gy1∪· · ·∪Gyn is a finite union of orbits. We have dimGGy = 0
for each orbit, so by (a) also dimG Y = 0. Moreover, Y(d) is the union of
those orbits of dimension d. Since each orbit is irreducible, these must be
the irreducible components of Y(d), so topY(d) equals the number of orbits of
dimension d, and hence topG Y = n is the total number of orbits.

Conversely, suppose dimG Y = 0. Then dimY(d) = d for all d such that Y(d) 6= ∅.
Now each orbit in Y(d) is irreducible of dimension d, so its closure must be an
irreducible component of Ȳ(d), of which there are only finitely many. Thus Y(d)

contains only finitely many orbits.

(e) The fibre over each point y ∈ Y(d) is isomorphic to StabG(y), so has di-
mension dimG − d. By the Main Lemma on fibre dimension, dimπ−1(Y(d)) =
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dimY(d) + dimG− d, so dimG Y(d) = dimπ−1(Y(d))− dimG. Taking the union
over all d we get dimG Y = dimπ−1(Y )− dimG.

We now recall from Exercise 5.2 that if G acts on a variety, then every con-
structible subset can be written as a finite disjoint union of G-stable irreducible
and locally closed subsets. This obviously applies to each Y(d), but also to
π−1(Y ), using the G-action h · (g, x) = (hgh−1, hx).

Assume further that each stabiliser is connected, so each fibre of π is irreducible.
Then, since the map π admits a section X → Z, x 7→ (1, x), we know from
Exercise 5.3 that the preimage of a (G-stable) irreducible subset of Y(d) is again
(G-stable) irreducible.

Write Y(d) = Y 1∪· · ·∪Y n as a finite disjoint union of G-stable irreducible locally
closeds. Then π−1(Y(d)) = Z1∪· · ·∪Zn is a disjoint union, where Zi = π−1(Y i)
isG-stable irreducible locally closed. Moreover, dimZi = dimG Y

i+dimG. Now
topY(d) is the number of Y i of maximal dimension, and similarly >π−1(Y(d))
is the number of dimZi of maximal dimension. We thus see that topG Y(d) =
topπ−1(Y(d)).

Since
topG Y =

∑
dimG Y(d)=dimG Y+d

topY(d)

and
topπ−1(Y ) =

∑
dimπ−1(Y(d))=dimπ−1(Y )

topπ−1(Y(d)),

the result follows.

3. Consider the path algebra KQ of the Kronecker quiver. The indecom-
posable modules of dimension vector smaller than α = (1, 2) are, up
to isomorphism, given by the following list

S1 : K 0 S2 : 0 K P1 : K K2

(
1
0

)
(

0
1

)
together with

Ra : K K
1

a
for a ∈ K, R∞ : K K

0

1

Set X := Mod(KQ,α). Describe X(d) for all d, giving representatives
for the orbits it contains and computing its dimension. Hence compute
the number of parameters dimGL(α)X.

Proof. The orbits in X are represented by the modules P1, S2 ⊕ Rλ for λ ∈
K ∪ {∞}, and S1 ⊕ S2

2 .

The dimensions of the endomorphism rings are, respectively, 1, 3, 5. Since the
dimension of the group GL1(K)×GL2(K) is 5, the dimensions of the orbits are,
respectively, 4, 2, 0.
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Thus X(4) = OP1
, X(2) =

⋃
λOS2⊕Rλ , X(0) = OS1⊕S2

2
.

The first and last are just single orbits, so have respective dimensions 4, 0.

Now the representation given by the pair
((
a
c

)
,
(
b
d

))
is isomorphic to some S2⊕Rλ

if and only if the matrix
(
a b
c d

)
has rank one. Thus X̄(2) = V (ad − bc), so is

irreducible of dimension 3 (as in Section 3.3 (F) of the lecture notes).

The numbers dimX(d) − d are thus, respectively, 0, 1, 0. Hence dimGX = 1
and topGX = 1.

4. Set A := K[x, y]/(x, y)2 and KQ the path algebra of the Kronecker
quiver. Consider the functor F : A−mod → KQ−mod defined as fol-
lows. Given an A-module M , we can regard this as a K-vector space M
equipped with two endomorphisms xM and yM . The Jacobson radical
of A is J = A(x, y) = Kx+Ky, so xMM,yMM ⊂ JM and xMJM =
0 = yMJM . We thus have induced maps x̄M , ȳM : M/JM → JM .
The functor F then sends M to the Kronecker representation

F (M) : M/JM JM
x̄M

ȳM

(a) How does F act on morphisms?

(b) Deduce that F sends indecomposable A-modules to indecomposable
KQ-modules. Moreover, M ∼= N if and only if FM ∼= FN .

(c) Show further that if X is an indecomposable KQ-module other than
the simple S2, then X ∼= FM for some indecomposable A-module.

(d) Using that KQ is tame, deduce that A is tame.

(e) Is the functor F a representation embedding?

Proof. (a) Let f : M → N be A-linear. Then f(JM) ⊂ JN , and so we have the
induced maps M/JM → N/JN and JM → JN . These commute with x̄ and
ȳ, and so we obtain a morphism of Kronecker representations.

Clearly F (id) = id and F (gf) = F (g)F (f). Also, F (f + g) = F (f) + F (g), so
we have an additive functor.

(b) There is an additive functor G from Kronecker modules to A-modules, send-

ing the Kronecker module U V
A

B
to the A-module U ⊕ V , where x acts

as
(

0 0
A 0

)
and y acts as

(
0 0
B 0

)
. The action on morphisms is clear.

We claim that GFM ∼= M . For, take a vector space retract r for JM � M ,
and consider the linear isomorphism M → (M/JM) ⊕ (JM), m 7→ (m̄, rm).
Note that x · (m̄,m′) = (0, x̄Mm̄). On the other hand, given m ∈ M we know
that xm ∈ JM , and equals x̄Mm̄, so is sent to (0, x̄Mm̄) = x·(m̄, rm). Similarly
for y, so this is an isomorphism of A-modules.

(It is not canonical, however, so we do not have GF ∼= id, and F and G are not
adjoint functors.)
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Thus if FM ∼= X ⊕ Y , then M ∼= GFM ∼= GX ⊕ GY . This shows that M
indecomposable implies FM indecomposable.

Also, if FM ∼= FN , then GFM ∼= GFN , so M ∼= N .

(c) Take an indecomposable Kronecker module X : U V
A

B
. If Im(A) +

Im(B) 6= V , then there is a non-zero map X → S2. This is necessarily a split
epimorphism, since S2 is simple projective, and hence X ∼= S2. Thus if X 6∼= S2,
then Im(A) + Im(B) is surjective. Now GX = U ⊕ V , and xU + yU = V , so
V = JGX. Hence FGX ∼= X.

(d) We have a bijection between isomorphism classes of indecomposable A-
modules of dimension d and isomorphism classes of indecomposable Kronecker
modules of dimension d, for all d > 1. (For d = 1 there is a unique simple
A-module.)

The Kronecker quiver is tame, as can be seen by taking the bimodules

Xd : K[T ]d K[T ]d
1

Jn(T )
.

Thus A is tame, using the bimodules GXd.

(e) The functor F is not left exact, so cannot be a representation embedding.

To see this, consider the inclusion JA→ A. Then F (JA) ∼= S2
1 and F (A) ∼= P1,

but there is no non-zero map S2
1 → P1.
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