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Abstract. In this paper, we study the twisted Fourier–Mukai partners of abelian surfaces.
Following the work of Huybrechts [33], we introduce the twisted derived equivalences (also
called derived isogenies) between abelian surfaces. We show that there is a twisted derived
Torelli theorem for abelian surfaces over algebraically closed fields with characteristic ̸= 2, 3.
For this we firstly extend a trick given by Shioda on integral Hodge structures, to rational
Hodge structures, ℓ-adic Tate modules and F -crystals. Using this trick, we can confirm the
Tate conjecture in a special case. Then we make use of Tate’s isogeny theorem to give a char-
acterization of the derived isogenies between abelian surfaces via so called principal isogenies.
As a consequence, we show the two abelian surfaces are principally isogenous if and only if they
are derived isogenous.
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1. Introduction

1.1. Background. In the study of abelian varieties, a natural question is to classify the Fourier–
Mukai partners of abelian varieties. Due to Orlov and Polishchuk’s derived Torelli theorem for
abelian varieties in (cf. [56, 58]), there is a geometric/cohomological classification of derived
equivalences between them. More generally, one can consider the twisted derived equivalence or
so called derived isogeny between abelian varieties in the spirit of [33].

Definition 1.1.1. Two abelian varieties X and Y are derived isogenous if they can be con-
nected by derived equivalences between twisted abelian varieties, i.e. there exist twisted abelian
varieties (Xi, αi) and (Xi, βi) such that there is a sequence of derived equivalences

Db(X,α) Db(X1, β1)

Db(X1, α2) Db(X2, β2)

...
Db(Xn, αn+1) Db(Y, βn)

≃

≃

≃

(1.1.1)

where Db(X,α) is the bounded derived category of α-twisted coherent sheaves on X.
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In [66], Stellari proved that derived isogenous complex abelian surfaces are isogenous using
the the Kuga–Satake varieties associated to their transcendental lattices (cf. Theorem 1.2 in
loc. cit. ). However, the converse is not true as there are isogenous abelian surfaces which are
not derived isogenous (cf. Remark 4.4 (ii) in loc. cit. ). The main goal of this paper is to give
a cohomological and geometric classification of derived isogenies between abelian surfaces over
algebraically closed fields of arbitrary characteristic.

1.2. Twisted derived Torelli theorem for abelian surfaces in characteristic zero. Let
us first classify the derived isogenies between abelian surfaces in term of isogenies. For this
purpose, we need to introduce a new type of isogeny: We say two abelian surfaces X and Y are
principally isogenous if there is an isogeny f from X to Y of square degree. For example, X
and its dual abelian variety X̂ are principally isogenous since any polarization L on X induces
an isogeny fL : X → X̂ of degree χ(L)2.

The first main result is

Theorem 1.2.1. Let X and Y be two abelian surfaces over k = k̄ with char(k) = 0. The
following statements are equivalent.

(i) X and Y are derived isogenous.
(ii) X and Y are principally isogenous.

A notable fact for abelian surfaces is that besides their 1st cohomology groups, their 2nd

cohomology groups also carry rich structures. In the untwisted case, Mukai and Orlov have
showed [49, 56] that

Db(X) ∼= Db(Y )⇔ H̃(X,Z) ∼=Hdg H̃(Y,Z)⇔ T(X) ∼=Hdg T(Y ),

where H̃(X,Z) and H̃(Y,Z) are the Mukai lattices, T(X) ⊆ H2(X,Z) and T(Y ) ⊆ H2(Y,Z)
denote the transcendental lattices, ∼=Hdg means integral Hodge isometries (cf. [12, Theorem
5.1]). The following result can be viewed as a generalization of Mukai and Orlov’s result.

Corollary 1.2.2. The statement (i) and (ii) of Theorem 1.2.1 is also equivalent to the following
equivalent conditions

(iii) the associated Kummer surfaces Km(X) and Km(Y ) are derived isogenous;
(iv) Chow motives h(X) ∼= h(Y ) are isomorphic as Frobenius exterior algebras;
(v) even degree Chow motives heven(X) ∼= heven(Y ) are isomorphic as Frobenius algebra.

When k = C, then the conditions above are also equivalent to
(vi) H2(X,Q) ∼= H2(Y,Q) as a rational Hodge isometry;
(vii) H̃(X,Q) ∼= H̃(Y,Q) as a rational Hodge isometry;
(viii) T(X)⊗Q ∼= T(Y )⊗Q as a rational Hodge isometry.

Here, the motive h(X) admits a canonical motivic decomposition produced by Deninger–
Murre [20]

h(X) =
4⊕

i=0

hi(X) (1.2.1)

such that H∗(hi(X)) ∼= Hi(X) for any Weil cohomology H∗(−). It satisfies hi(X) =
∧i h1(X)

for all i, h4(X) ' 1(−4) and
∧i h1(X) = 0 for i > 4 (cf. [37]). The motive h(X) is a Frobenius

exterior algebra objects in the category of Chow motives over k and the even degree part

heven(X) =

2⊕
k=0

2k∧
h1(X) (1.2.2)

forms a Frobenius algebra object in the sense of [25].
The equivalences (i) ⇔ (iv) ⇔ (v) are motivic realizations of derived isogenies between

abelian surfaces, which can be viewed as an analogy of the motivic global Torelli theorem on K3
surfaces (cf. [33, Conjecture 0.3] and [25, Theorem 1]). The equivalences (i)⇔ (iii)⇔ (viii) can
be viewed as a generalization of [66, Theorem 1.2]. The Hodge-theoretic realization (i)⇔ (vi)
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follows a similar strategy of [33, Theorem 0.1], which makes use of Shioda’s period map and
Cartan–Dieudonné decomposition of a rational isometry. The equivalences (vi)⇔ (vii)⇔ (viii)
follow from the Witt cancellation theorem (see §5.4).

1.3. Shioda’s trick. The proof of Theorem 1.2.1 is concluded by a new ingredient so called
rational Shioda’s trick on abelian surfaces. The original Shioda’s trick in [63] plays a key role
in the proof of Shioda’s global Torelli theorem for abelian surfaces, which links the weight-1
integral Hodge structure to the weight-2 integral Hodge structure of an abelian surface. We
generalize it in the following form.

Theorem 1.3.1 (Shioda’s trick, see §4). Let X and Y be two complex abelian surfaces. Then
for any admissible Hodge isometry

ψ : H2(X,Q)
∼−→ H2(Y,Q)

we can find an isogeny f : Y → X of degree d2 such that ψ = f∗

d .

As an application, the generalized Shioda’s trick gives the algebraicity of some cohomological
cycles. For any integer d, one can consider a Hodge similitude of degree d

H2(X,Q)
∼−→ H2(Y,Q),

called a Hodge isogeny of degree d. Due to the Hodge conjecture on products of abelian surfaces,
we know that every Hodge isogeny is algebraic. Our generalized Shioda’s trick actually shows
that it is induced by certain isogenies. Similarly, we prove the `-adic and p-adic Shioda’s trick,
which gives a proof of Tate conjecture for isometries between the 2nd-cohomology groups (as
either Galois-modules or crystals) of abelian surfaces over finitely generated fields. See Corollary
4.6.3 for more details.

1.4. Results in positive characteristic. The second part of this paper is to investigate the
twisted derived Torelli theorem over positive characteristic fields. Due to the absence of a sat-
isfactory global Torelli theorem, one cannot follow the argument in characteristic zero directly.
Instead, we need some input from p-adic Hodge theory. Our formulation is the following.

Theorem 1.4.1. Let X and Y be two abelian surfaces over k = k̄ with char(k) = p > 3. Then
the following statements are equivalent.

(i′) X and Y are prime-to-p derived isogenous.
(ii′) X and Y are prime-to-p principally isogenous.

Moreover, in case that X is supersingular, then Y is derived isogenous to X if and only if Y is
supersingular.

Here, we say a derived isogeny as (1.1.1) is prime-to-p if its crystalline realization is integral
(see Definition 3.1.1 for details), which is a condition somewhat technical. The main ingredients
in the proof of Theorem 1.4.1 are the lifting-specialization technique, which works well for prime-
to-p derived isogenies. Actually, our method shows that there is an implication (i′) ⇒ (ii′) for
derived isogenies which are not necessarily being prime-to-p (see Theorem 6.4.1). Conversely, we
believe that the existence of quasi-liftable isogenies will imply the existence of derived isogeny
(see Conjecture 6.4.2). The only obstruction is the existence of the specialization of non-prime-
to-p derived isogenies between abelian surfaces. See Remark 6.2.2.

Another natural question is whether two abelian surfaces are derived isogenous if and only
if their associated Kummer surfaces are derived isogenous over positive characteristic fields.
Unfortunately, we cannot fully prove the equivalence. Instead, we provide a partial solution of
this question. See Theorem 6.5.1 for more details.

Similarly, one may ask whether such results also hold for K3 surfaces. Let Fq be a finite
field with q = pk a power of some prime p. Recall that two K3 surfaces S and S′ over Fq are
(geometrically) isogenous in the sense of [70] if there exists an algebraic correspondence Γ which
induces an isometry of Gal(F̄p/k)-modules

Γ∗
ℓ : H

2
ét(SF̄p

,Qℓ)
∼−→ H2

ét(S
′
F̄p
,Qℓ),
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for all ` ∤ p and an isometry of isocrystals

Γ∗
p : H

2
crys(Sk/K)

∼−→ H2
crys(S

′
k/K),

for some finite extension k/Fq and the fraction field K of W = W (k). More generally, we can
take a finitely generated field k over Fp and a Cohen ring of k. Then we say that the isogeny is
prime-to-p if the isometry Γ∗

p is integral, i.e., Γ∗
p

(
H2

crys(Sk/W )
)
= H2

crys(S
′
k/W ). This leads us

to a formulation of the twisted derived Torelli conjecture for K3 surfaces.

Conjecture 1.4.2. For two K3 surfaces S and S′ over a finitely generated field k, then the
following are equivalent.

(a) There exists a derived isogeny Db(S) ∼ Db(S′).
(b) There exists an isogeny between S and S′.

The implication (a)⇒ (b) is clear, while the converse remains open if char(k) > 0. In the case
of Kummer surfaces, our results provide some evidence of Conjecture 1.4.2. We shall mention
that recently Bragg and Yang have studied the derived isogenies between K3 surfaces over
positive characteristic fields and they proved a weaker version of the statement in Conjecture
1.4.2 (cf. [10, Theorem 1.2]).

Organization of the paper. We will start with two preliminary sections, in which we include
some well-known constructions and facts: In Section 2, we perform computations for the Brauer
group of abelian surfaces using the Kummer construction. This allows us to prove the lifting
lemma for twisted abelian surfaces of finite height.

In Section 3, we collect the knowledge on derived isogenies between abelian surfaces and
their cohomological realizations, which include the motivic realization, the B-field theory, the
twisted Mukai lattices, a filtered Torelli theorem and its relation to the moduli space of twisted
sheaves. At the end of this section , we follow Bragg and Lieblich’s twistor line argument in [8]
to conclude the supersingular case of Theorem 1.4.1.

In Section 4, we revise Shioda’s work and extend it to rational Hodge isogenies. This is the
key ingredient for proving Theorem 1.2.1. Furthermore, after introducing the admissible `-adic
and p-adic bases, we prove the `-adic and p-adic Shioda’s trick for admissible isometries on
abelian surfaces. In an application, we prove the algebraicity of these isometries on abelian
surfaces over finitely generated fields.

Sections 5 and 6 are devoted to proving Theorem 1.2.1 and Theorem 1.4.1. Theorem 1.2.1 is
essentially Theorem 5.1.3 and Theorem 5.3.4. The proof of Theorem 1.4.1 is much more subtle.
We establish the lifting and specialization theorem for prime-to-p derived isogeny. Then we can
conclude (i′)⇔ (ii′) from Theorem 1.2.1 for abelian surfaces of finite heights.

Acknowledgement. The authors are grateful for the useful comments by Ziquan Yang. The
authors thank the referees for their careful reading and valuable suggestions, which improved
this article.

Notations and Conventions.

(1). Throughout this paper, we will use the symbol k to denote a field. If k is a perfect field and
char k = p > 0, we denote W :=W (k) for the ring of Witt vectors in k, which is equipped with
a morphism σ : W → W induced by the Frobenius map on k. If k is not perfect, we consider
the Cohen ring W with W/pW = k. Inside the ring of Witt vectors in a fixed algebraic closure
k̄ of k, we get a fixed Frobenius lift σ : W →W of k.

(2). Let X be a smooth projective variety over k. We denote by H•
ét(Xk̄,Zℓ) the `-adic étale

cohomology group of Xk̄. The Zℓ-module H•
ét(Xk̄,Zℓ) has been endowed with a canonical

Gk = Gal(k̄/k)-action. We use Hi
crys(X/W ) to denote the i-th crystalline cohomology group of

X over the p-adic base W ↠ k, which is a W -module.
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(3). For any abelian group G and an integer n, we denote G[n] for the subgroup of n torsions
in G and G{n} for the union of all n-power torsions. For a lattice L in Z or Q and an integer
n, we use L(n) for the lattice twisted by n, that is, L = L(n) as Z or Q-module, but

〈x, y〉L(n) = n〈x, y〉L.
The reader shall not confuse it with the Tate twist.

(4). Let X and Y be abelian surfaces. Here is a list of all various notions of isogenies between
X and Y .

• Isogeny: a surjective homomorphism X → Y with finite kernel.
• Quasi-isogeny: a Q-isogeny.
• Prime-to-` quasi-isogeny: a Z(ℓ)-isogeny.
• Principal quasi-isogeny: a quasi-isogeny whose degree is a square.
• Derived isogeny: a chain of twisted derived equivalences from X to Y .
• Prime-to-` derived isogeny: a derived isogeny whose cohomological realization is

prime-to-`.

2. Twisted abelian surface

In this section, we give some preliminary results in the theory of twisted abelian surfaces,
especially those of positive characteristics. Many of them are well-known to experts.

2.1. Gerbes on abelian surfaces. Let X be a smooth projective variety over a field k and
let X → X be a µn-gerbe over X. This corresponds to a pair (X,α) for some α ∈ H2

fl(X,µn),
where the cohomology group is with respect to the fppf topology. Since µn is commutative,
there is a bijection of sets

H2
fl(X,µn)

∼−→ {µn-gerbes on X}/ '
where ' is the µn-equivalence defined as in [27, IV.3.1.1]. We may write α = [X ]. For any
integer m, let X (m) be the gerbe corresponding to the cohomological class m[X ] ∈ H2

fl(X,µn).
The Kummer exact sequence induces a surjective map

H2
fl(X,µn)→ Br(X)[n] (2.1.1)

where the right-hand side is the cohomological Brauer group Br(X) := H2
ét(X,Gm). There is

an associated Gm-gerbe on X via the map (2.1.1), denoted by XGm . Let [XGm ] denote the
corresponding class in Br(X)[n]. If [XGm ] = 0, we will call X an essentially-trivial µn-gerbe.

Following [39, §2], one can define the twisted coherent sheaves and the twisted derived cate-
gory of them in terms of gerbes.

Definition 2.1.1. Let X → X be a µn-gerbe or Gm-gerbe over X. Let Coh(m)(X ) be the
abelian category of X (m)-twisted coherent sheaves consists of m-fold coherent sheaves on the
stack X . We define D(m)(X ) as the bounded derived category of Coh(m)(X ).

As shown in [39, Proposition 2.1.2.6, Proposition 2.1.3.3], there are natural equivalences

Coh(1)(X ) ' Coh(1)(XGm) ' Coh(X, [XGm ])

where the last is the abelian category of twisted sheaves defined by Cǎldǎraru [15]. Throughout
this paper, we mainly use Lieblich’s terminology.

For two G-gerbes X → X and Y → Y , we denote by X ∧i,j Y the G-gerbe on X ×Y given
by the image of G×G-gerbe X × Y under

H2
fl(X × Y,G×G)→ H2

fl(X × Y,G)

induced by the multiplication G×G→ G, (g1, g2) 7→ (gi1g
j
2). There is an equivalence

Coh(1)(X ∧i,j Y )
∼−→ Coh(i,j)(X × Y ),

where the right-hand side is the subcategory of (i, j)-fold coherent sheaves on X × Y (cf. [29,
Corollary 2.3.2]). When i = j = 1, we simply write X ∧ Y for X ∧1,1 Y .
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A derived equivalence means a k-linear exact equivalence between triangulated categories in
the form

Φ: D(1)(X )
∼−→ D(1)(Y ).

If Φ is of the form
ΦP(E) = Rq∗(p

∗E ⊗ P),
then we call it a Fourier–Mukai transform with a kernel P ∈ D(−1,1)(X ×Y ) and the projections
p : X × Y → X , q : X × Y → Y , and X ,Y are called a pair of Fourier–Mukai partners.
If these gerbes are (essentially) trivial, then by Orlov’s result, any k-linear exact equivalence
between between bounded derived categories of smooth projective varieties is of this form.

Similarly to Orlov’s theorem, Canonaco and Stellari show that any twisted derived equivalence
is also of Fourier–Mukai type.

Proposition 2.1.2 ([16]). Any derived equivalence D(1)(X )
∼−→ D(1)(Y ) can be uniquely (up

to isomorphism) as a Fourier–Mukai transform

ΦP : D(1)(X )
∼−→ D(1)(Y ),

whose kernel P is a perfect complex in D(−1,1)(X × Y ).

2.2. Kummer construction. If k has characteristic p 6= 2, there is an associated Kummer
surface Km(X) constructed as follows:

X̃ X

Km(X) X/ι

σ̃

π

σ

(2.2.1)

where
• ι is the involution of X given by sending x to −x;
• σ is the crepant resolution of quotient singularities;
• σ̃ is the blow-up of X along the closed subscheme X[2] ⊂ X. Its birational inverse is

denoted by σ̃−1.
Let E ⊂ X̃ be the exceptional locus of σ̃. For a classical cohomology theory H•(−) (such as
Betti, étale and crystalline) with coefficients in R, if 2 is invertible in R, we have a canonical
decomposition

H2(Km(X)) ∼= H2(X)⊕ π∗ΣX , (2.2.2)
where ΣX is the summand in H2(X̃) generated by irreducible components of E.

Moreover, we have a composition of the sequence of morphisms
(σ̃−1)∗ : Br(X̃)→ Br(X̃ \ E) ∼= Br(X \X[2]) ∼= Br(X).

Here, the last isomorphism Br(X) → Br(X \ X[2]) is due to Grothendieck’s purity theorem
(cf. [28, 68]).

Proposition 2.2.1. When k = k̄ and p 6= 2, the (σ̃−1)∗π∗ induces an isomorphism between
cohomological Brauer groups

Θ: Br(Km(X))→ Br(X). (2.2.3)
In particular, when X is supersingular over k̄, then Br(X) is isomorphic to the additive group
k̄.

Proof. For torsions of (2.2.3) whose orders are coprime to p, the proof is essentially the same as
[65, Proposition 1.3] by the Hochschild–Serre spectral sequence and the fact that H2(Z/2Z, k∗) =
0 (cf. [69, Proposition 6.1.10]) as char(k) > 2. See also [66, Lemma 4.1] for the case k = C. For
p-primary torsion part, we have

Br(Km(X)){p} ∼= Br(X)ι{p}
from the Hochschild–Serre spectral sequence, where Br(X)ι is the ι-invariant subgroup. Hence,
it suffices to prove that ι acts trivially on Br(X). This is well-known to experts and works for
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any abelian varieties over an algebraically closed field (See the proof of [53, Lemma 8.1] for
example).

In fact, H2
fl(X,µp) can be ι-equivariantly embedded to H2

dR(X/k) by de Rham–Witt theory
(cf. [51, Proposition 1.2]). The action of ι on H2

dR(X/k) = ∧2H1
dR(X/k) is the identity, as its

action on H1
dR(X/k) is given by x 7→ −x. Thus the involution on H2

fl(X,µp) is trivial. Then by
the exact sequence

0→ NS(X)⊗ Z/p→ H2
fl(X,µp)→ Br(X)[p]→ 0,

we can deduce that Br(X)[p] is invariant under the involution. Furthermore, for pn-torsions with
n ≥ 2, we can proceed by induction on n. Assume that all elements in Br(X)[pd] are ι-invariant
if 1 ≤ d < n. By abuse of notation, we still use ι to denote the induced map Br(X)→ Br(X).
For α ∈ Br(X)[pn], pα ∈ Br(X)[pn−1] is ι-invariant. This gives

pα = ι(pα) = pι(α),

which implies α− ι(α) ∈ Br(X)[p]. Applying ι on α− ι(α), we can obtain

α− ι(α) = ι(α)− α.

It implies that α − ι(α) is also a 2-torsion element. Since p is coprime to 2, we can conclude
that α = ι(α).

If X is supersingular, then Km(X) is also supersingular. We have already known that the
Brauer group of a supersingular K3 surface is isomorphic to k by [2]. Thus, Br(X) ∼= k. □

Remark 2.2.2. In the case where X is supersingular, the method of [2] cannot be applied
directly to show that Br(X) = k as H1

fl(X,µpn) is not trivial in general for an abelian surface
X.

2.3. A lifting lemma. In [7], Bragg has shown that a twisted K3 surface can be lifted to
characteristic 0. Though his method cannot be applied directly to twisted abelian surfaces, one
can still obtain a lifting result for twisted abelian surfaces via the Kummer construction. The
following result will be used frequently in this paper.

Lemma 2.3.1. Let X0 → X0 be a Gm-gerbe on an abelian surface X0 over k = k̄. Suppose
char(k) > 2 and X has finite height. Then there exists a complete discrete valuation ring V
whose residue field is k and fraction field is K such that
• there is a smooth projective abelian scheme XV → XV over Spec(V ) whose special fiber of

XV → XV is isomorphic to X0 → X0,
• There is a sequence of isomorphisms

NS(XK)
∼←− NS(XV )

∼−→ NS(X0).

Here NS(XV ) is the group the Cartier divisors on XV modulo the numerical equivalence over
V and the morphisms are given by pull-backs.

Proof. The existence of such lifting is ensured by [7, Theorem 7.10], [38, Lemma 3.9] and
Proposition 2.2.1. Generally speaking, let S0 → Km(X0) be the associated twisted Kummer
surface via the isomorphism (2.2.3) in Proposition 2.2.1. Then [7, Theorem 7.10] (by taking
the Pic(Km(X0)) as the saturated sublattice of itself) asserts that there exists some discrete
valuation ring V and a projective family of K3 surfaces

SV SV

Spec(V )

such that the special fiber is S0 → Km(X0) and the specialization map of Néron–Severi lattices
NS(SK) → NS(Km(X0)) is an isomorphism, where K = Frac(V ). Now we can apply [38,
Lemma 3.9] to get a lifting XV → Spec(V ) of X such that Km(XV ) ∼= SV over Spec(V ).
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Note that we have the isomorphism NS(XV ) ∼= NS(XK) since XV is regular. Consider the
following commutative diagram (see [44, Proposition 3.3] and its proof):

NS(XK̄) NS(XK) ∼= NS(XV ) NS(X0).

sp

(2.3.1)

The morphism NS(XV )→ NS(X0) is injective by [44, Proposition 3.6] since NS(XK) is torsion-
free. The morphism NS(XK) → NS(XK) is a primitive embedding since Br(V ) = 0. Thus,
it is sufficient to see that the specialization map sp is an isomorphism. The relative Kummer
construction Km(XV ) ∼= SV canonically identifies the NS(XK) (resp. NS(X0)) as a sublattice
of NS(SK) (resp. NS(Km(X0))) after dividing 2 (see [51, Lemma 7.11] or [64, Proposition 3.1]).
Moreover, the identification is compatible under specialization. Then we can conclude it by the
isomorphism NS(SK) ∼= NS(Km(X0)).

To lift the Gm-gerbe X0 → X0 to Spec(V ), it is equivalent to find a Brauer class in Br(XV )
such that its restriction to X0 is [X0]. Analogous to the proof of Proposition 2.2.1, there is a
canonical map between the cohomological Brauer groups

Θ = (σ̃−1)∗π∗ : Br(Km(XV ))→ Br(XV )

as in (2.2.3). Taking the image Θ([SV ]) ∈ Br(XV ), this is the lifting of [X0] as desired. □

2.4. Flat cohomology of abelian surfaces. Finally, we consider the representability of the
flat cohomology of abelian surfaces. Let f : X → S be a flat and proper morphism of algebraic
spaces of finite type over k. Consider the sheaf of the abelian groups Rif∗µp on the big fppf
site (Sch/S)fl, which can be expressed as the fppf sheafification of

S′ 7→ Hi
fl(XS′ , µp)

for any S-scheme S′. The representability of Rif∗µp is difficult to determine due to the complex-
ity of flat cohomology with p-torsion coefficients. In this part, we will prove the representability
for abelian surfaces.

Proposition 2.4.1. Let f : X → S be an abelian S-scheme of relative dimension 2. Then
R1f∗µp ∼= X̂[p] is a finite flat S-group scheme.

Proof. It suffices to check them affine locally on the base. Assume S is an affine scheme of finite
type over k. Taking the Stein factorization, we can further assume f∗OX

∼= OS . Then f∗µp ∼= µp
also holds universally. Under this assumption, we have an exact sequence of fppf-sheaves by
Kummer theory:

0→ R1f∗µp → R1f∗Gm → R1f∗Gm. (2.4.1)

Since R1f∗Gm computes the relative Picard scheme PicX/S and the Néron–Severi group of X
is torsion-free, we can see

R1f∗µp ∼= ker
(
PicX/S

·p−→ PicX/S

)
∼= ker

(
Pic0X/S

·p−→ Pic0X/S

)
.

On the other hand, it is well known that Pic0X/S is representable by the dual abelian S-
scheme X̂ (cf. [50, Corollay 6.8]). Thus, R1f∗µp is representable by the commutative finite
group S-scheme X̂[p]. □

Proposition 2.4.2. Let f : X → S be a proper smooth family of abelian surfaces over an
algebraic space S. Then R2f∗µp is representable by an algebraic space, which is separated and
locally of finite presentation over S.

Proof. This is a consequence of [9, Theorem 1.8, Example 5.9] as R1f∗µp is representable by
Lemma 2.4.1. □
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Remark 2.4.3. The case in which X → S = Spec(k) is a smooth surface for some field k
is claimed by Artin in [2, Theorem 3.1] without proof. Bragg and Olsson provide a proof
(Corollary 1.4 in [9]). For relative K3 surfaces, there is a moduli-theoretic proof given by Bragg
and Lieblich using the stack of Azumaya algebras (cf. [8, Theorem 2.1.6]). Their proof cannot
be used directly for relative abelian surfaces as the essential assumption R1f∗µp = 0 fails in the
fppf site (Sch/S)fl.

Remark 2.4.4. An alternative proof for Proposition 2.4.2 is to apply Artin’s representability
criterion [1, Theorem 5.3]. The most technical part is to see the separatedness.

The following observation is essential in the construction of the twistor space of supersingular
abelian or K3 surfaces.

Corollary 2.4.5 ([8, Proposition 2.2.4]). Suppose that each geometric fiber of f : X → S is
supersingular. The connected components of any geometric fiber of R2f∗µp → S are isomorphic
to the additive group scheme Ga.

Proof. Note that the completion of each geometric fiber of R2f∗µp at s̄ ∈ S, along the identity
section, is isomorphic to the formal Brauer group B̂rXs̄/k(s̄), which is isomorphic to Ĝa. The
only smooth connected p-torsion group scheme at k(s̄) with this property is Ga. □

3. Cohomological realizations of derived isogeny

In this section, we provide a summary of the derived isogenies on the cohomology groups of
abelian surfaces and introduce the notion of prime-to-` derived isogenies. This action can be
described in two ways:

(1) the motivic realization, which provides rational isomorphisms on the cohomology groups;
(2) the realization on the integral twisted Mukai lattices.

Moreover, following the work in [30, 41], we extend the filtered Torelli theorem to twisted
abelian surfaces over an algebraically closed field k with char(k) 6= 2. As a corollary, we show
that any Fourier–Mukai partner of a twisted abelian surface is isomorphic to a moduli space of
stable twisted sheaves (cf. Theorem 3.5.3).

3.1. Motivic realization of derived isogeny on cohomology groups. It is known that
(twisted) derived equivalent smooth projective surfaces over a field k have isomorphic Chow
motives (see [32, §2.4] and [25, §1.2] for example). We record these results for the convenience
of the reader, focusing on abelian surfaces over k as an example.

For any algebraic surface X over a field k, one may consider idempotent correspondences
π2alg,X and π2tr,X in CH2(X ×X)Q defined as

π2alg,X :=

ρ∑
i=1

1

deg(Ei · Ei)
Ei × Ei, π2tr,X = π2X − π2alg,X ,

where π2X is the idempotent correspondence given by the Chow–Künneth decomposition (1.2.1)
and Ei are divisors generating the Néron–Severi group NS(Xks) such that Ei · Ei 6= 0 and
Ei · Ej = 0 for any i 6= j. Consider the decomposition of h2(X):

h2(X) = h2alg(X)⊕ h2tr(X)

given by π2alg,X and π2tr,X . It is not hard to see h2alg(X) is a Tate motive after base change to
the separable closure ks, whose Chow realization is

CH∗
Q(h

2
alg(Xks)) ∼= NS(Xks)Q.

Let ΦP : D(1)(X )
∼−→ D(1)(Y ) be a derived equivalence between two twisted abelian surfaces

over k. Consider the cycle class

chX (−1)∧Y (P) ·
√

TdX×Y = chX (−1)∧Y (P) ∈ CH∗(X × Y )Q. (3.1.1)
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Here chX (−1)∧Y (−) is the twisted Chern character defined same as in (3.3.2), this provides an
isomorphism

h(X)
∼−→ h(Y ),

which preserves the even-degree parts

heven(−) :=
2⊕

k=0

h2k(−) ∼=
2⊕

k=0

2k∧
h1(−).

(cf. [25, §§1.2.3]). For a Weil cohomology theory H, its cohomological realization

Heven(X)
∼−→ Heven(Y ) (3.1.2)

preserves the Mukai pairing. The cohomological realization (3.1.2) is not integral in general.
We can introduce the prime-to-` derived isogeny via the integral cohomological realizations,
which will be used in the rest of the paper.

Definition 3.1.1. Let ` be a prime and char(k) = p. When ` 6= p, a derived isogeny Db(X) ∼
Db(Y ) given by

Db(X,α) Db(X1, β1)

Db(X1, α2) Db(X2, β2)

...
Db(Xn, αn+1) Db(Y, βn)

≃

≃

≃

is called prime-to-` if each cohomological realization in the sequence

ϕ̃ℓ : H
even
ét (Xi−1,k̄,Qℓ)

∼−→ Heven
ét (Xi,k̄,Qℓ)

is integral, i.e. ϕ̃ℓ (H
even
ét (Xk̄,Zℓ)) = Heven

ét (Yk̄,Zℓ). In the case ` = p, it is called prime-to-p if
each ϕ̃p : H

even
crys (Xi−1/K)

∼−→ Heven
crys (Xi/K) is integral.

Remark 3.1.2. Note that the correspondence (3.1.1) does not necessarily preserve the cohomo-
logical degrees. However, it admits a modification, that is an isomorphism between degree two
parts: Consider the cycle class [Γtr] ∈ CH2(X × Y )Q, given by the codimension two component
of (3.1.1). It induces an isomorphism of transcendental motives by a weight argument

[Γtr]2 := π2tr,Y ◦ [Γtr] ◦ π2tr,X : h2tr(X)
∼−→ h2tr(Y ).

It extends to an isomorphism h2(X)
∼−→ h2(Y ) since their algebraic parts are abstractly isomor-

phic as X and Y have the same Picard number. This supports the implication (v) ⇒ (vii) in
Corollary 1.2.2.

3.2. Mukai lattices and B-fields. Let k be an algebraically closed field with char(k) 6= 2.
Let X be an abelian surface over k. When k = C, the Mukai lattice of X is defined as

H̃(X,Z) := H0(X,Z(−1))⊕H2(X,Z)⊕H4(X,Z(1))

with the Mukai pairing
〈(r1, b1, s1), (r2, b2, s2)〉 := b1 · b2 − r1s2 − r2s1, (3.2.1)

and a pure Z-Hodge structure of weight 2. In general, we have the following notion of Mukai
lattices [41, §2]. Note that the definition there is only for K3 surfaces, but works well for any
smooth surface with trivial canonical bundle in fact.
• Let Ñ(X) be the extended Néron–Severi lattice defined as

Ñ(X) := Z⊕NS(X)⊕ Z,

with Mukai pairing
〈(r1, c1, s1), (r2, c2, s2)〉 = c1 · c2 − r1s2 − r2s1.
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The Chow realization of
h0(X)(−1)⊕ h2alg(X)⊕ h4(X)(1)

can be identified with Ñ(X)Q.
• if char(k) = 0 or if char(k) = p > 0 and ` is another prime as usual, then the `-adic Mukai

lattice is defined on the even degrees of integral `-adic cohomology of X for ` coprime to
char(k)

H0
ét(X,Zℓ(−1))⊕H2

ét(X,Zℓ)⊕H4
ét(X,Zℓ(1)),

with Mukai pairing defined in a similar formula as (3.2.1) denoted by H̃(X,Zℓ); or
• if char(k) = p > 0, then the p-adic Mukai lattice H̃(X,W ) is defined on the even degrees of

crystalline cohomology of X with coefficients in W (k)

H0
crys(X/W (k))(−1)⊕H2

crys(X/W (k))⊕H4
crys(X/W (k))(1),

where the twist (i) is given by changing the Frobenius F 7→ p−iF , and the Mukai pairing is
given similarly in the formula (3.2.1).

Hodge B-field. Assume k = C. For any Gm-gerbe X → X, one can find a lift B ∈ H2(X,Q)
of [X ] ∈ Br(X) from the exponential sequence. Such B is called a B-field lift of α. We define
the twisted Mukai lattice of X as

H̃(X,Z;B) := exp(B) · H̃(X,Z) ⊂ H̃(X,Z)⊗Z Q,

which is isomorphic to H̃(X,Z). For simplicity of notation, we still use (r, c, s) to denote the
vector exp(B)(r, c, s). There is an induced pure Hodge structure of weight 2 on H̃(X,Z;B)
given by

H̃0,2(X;B) = exp(B)H̃0,2(X),

(cf. [35, Definition 2.3]). It is clear that a different choice of such lift B′ satisfies B − B′ ∈
H2(X,Z) and thus there is a Hodge isometry

exp(B −B′) : H̃(X,Z;B′)
∼−→ H̃(X,Z;B).

This means that, up to isomorphisms, H̃(X,Z;B) is independent of the choice of the B-field
lifting and can also be denoted by H̃(X ,Z).

As shown in [72, Corollary 4.4], for any derived equivalence ΦP : D(1)(X )
∼−→ D(1)(Y ) be-

tween two twisted abelian surfaces, the Fourier-Mukai kernel induces a Hodge isometry

ϕ̃ = ϕB,B′ : H̃(X,Z;B)
∼−→ H̃(Y,Z;B′) (3.2.2)

for suitable B-field lifts B,B′. It provides the cohomological realization as in (3.1.2) rationally.

`-adic and crystalline B-field. Let us briefly recall the generalized notions of B-fields in
both `-adic cohomology (cf. [40, §3.2]) and crystalline cohomology (cf. [6, §3]) as analogues in
Betti cohomology. The complete considerations for the cases `-adic and p-adic are given in [10,
§2], which are applicable to both K3 and abelian surfaces. Therefore, we omit some technical
details here.

For a prime ` 6= p and n ∈ N, the Kummer sequence of étale sheaves

1→ µℓn → Gm
(·)ℓn−−−→ Gm → 1, (3.2.3)

induces a long exact sequence

· · ·Pic(X)
·ln−→ PicX → H2

ét(X,µℓn)→ Br(X)[`n]→ 0.

Taking the inverse limit lim←−n
, we get a map

πℓ : H
2
ét(X,Zℓ(1)) = lim←−

n

H2
ét(X,µℓn)→ H2

ét(X,µℓn)↠ Br(X)[`n].

Lemma 3.2.1. The map πℓ is surjective.
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Proof. We have a short exact sequence (cf. [45, Chap.V, Lemma 1.11])
0→ H2

ét(X,Zℓ(1))/`
n → H2

ét(X,µℓn)→ H3
ét(X,Zℓ(1))[`

n]→ 0.

Since H3
ét(X,Zℓ(1)) is torsion-free for any abelian surface X, we have an isomorphism

H2
ét(X,Zℓ(1))/`

n ∼= H2
ét(X,µℓn).

Therefore, the reduction morphism H2
ét(X,Zℓ(1))→ H2

ét(X,µℓn) can be identified with

H2
ét(X,Zℓ(1))↠ H2

ét(X,Zℓ(1))/`
n,

which is surjective. The assertion then follows from it. □
For any α ∈ Br(X)[`n] such that ` 6= p, let Bℓ(α) := π−1

ℓ (α), which is nonempty by Lemma
3.2.1.

For Brauer class α ∈ Br(X)[pn], we need the following commutative diagram via the de
Rham–Witt theory (cf. [36, I.3.2, II.5.1, Théorème 5.14])

0 H2(X,Zp(1)) H2
crys(X/W ) H2

crys(X/W )

H2
fl(X,µpn) H2

crys(X/Wn)

pn:=(⊗Wn)

p−F

d log

(3.2.4)

where H2(X,Zp(1)) := lim←−n
H2

fl(X,µpn). The map d log is known to be injective by flat duality
(cf. [51, Proposition 1.2]). Since the crystalline cohomology groups of an abelian surface are
torsion-free, the mod pn reduction map pn is surjective. Consider the canonical surjective map

πp : H
2
fl(X,µpn)↠ Br(X)[pn],

induced by the Kummer sequence. We set

Bp(α) :=

b ∈ H2
crys(X/W )

∣∣∣∣∣∣
pn(b) = d log(t) for some
t ∈ H2

fl(X,µpn) such that
πp(t) = α

.
Following [10, Definition 2.16, 2.17], we can introduce the (mixed) B-fields for twisted abelian

surfaces.

Definition 3.2.2. Let X → X be a µn-gerbe and [XGm ] ∈ Br(X)[n].
• If n = `t for some prime `, an `-adic B-field lift of X → X is an element B = b

ℓt , where
b ∈ Bℓ([XGm ]). When ` = p, it is also called a crystalline B-field lift.
• In general, a mixed B-field lift of X → X is a collection B = {Bℓ} consisting of a choice

of an `-adic B-field lift Bℓ of [X (nℓ−tℓ )
Gm

] for all prime factors ` | n, where tℓ is the `-adic
valuation of n.

Remark 3.2.3. Not all elements in H2
crys(X/W )[1p ] are crystalline B-fields since the map d log

is not surjective. From the first row in the diagram (3.2.4), we can see B ∈ H2
crys(X/W )[1p ] is a

B-field lift of some Brauer class if and only if F (B) = pB.

3.3. Twisted Mukai lattice over arbitrary fields. Let π : X → X be a µn-gerbe and
ord([XGm ]) = n, B = {Bℓ} a mixed B-field lift of [XGm ]. We define the `-adic twisted Mukai
lattice as

H̃(X,Bℓ) =


exp(Bℓ)H̃(X,Zℓ) if ` 6= p

exp(Bℓ)H̃(X,W ) if ` = p

(3.3.1)

endowed with the Mukai pairing (3.2.1), where exp(Bℓ) = 1 +Bℓ +
B2

ℓ
2 .

Up to isomorphisms, the twisted Mukai lattice H̃(X,Bℓ) is independent of the choice of the
B-field lift. We may use H̃(X ,Zℓ) or H̃(X ,W ) to denote the twisted Mukai lattices to highlight
the coefficients, irrespective of the choice of the B-field lift.
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Definition 3.3.1. Let K
(1)
0 (X ) be the Grothendieck group of Coh(1)(X ). The map of twisted

Chern character is the unique additive group homomorphism

chX : K
(1)
0 (X )→ Ñ(X)Q

such that for any locally-free X -twisted sheaf E on X with positive rank

chX (E) = n
√
π∗(E⊗n) ∈ Ñ(X)Q, (3.3.2)

where n
√
− means a choice of n-roots such that the 0-codimension component of chX (E) is equal

to rank E .
Denote by Ñ(X ) the image of K(1)

0 (X ) in Ñ(X)Q under the twisted Chern character map
chX , called extended twisted Néron-Severi lattice. For E ∈ D(1)(X ), we define v(E) = chX ([E ]) ∈
Ñ(X ) to be the Mukai vector of E .

One can also define the map of twisted Chern character to cohomological twisted Mukai
lattice

chB : K
(1)
0 (X )→ H̃(X,Bℓ),

see [40, §3.3] and [6, Appendix A3] for `-adic and crystalline cases, respectively. For any mixed
B-field lift B of [XGm ], the twisted Chern character chB factors through Ñ(X ):

K
(1)
0 (X ) H̃(X,Bℓ)

Ñ(X )

chBℓ

chX exp(Bℓ) clH

where clH is the cycle class map to the cohomology theory H(−). The following result is
essentially proved in [10].

Proposition 3.3.2. Let B be a mixed B-field lift of [XGm ] ∈ Br(X). Then

Ñ(X ) ∼=
⋂
ℓ

(
Ñ(X)⊗ Z[

1

`
] ∩ H̃(X,Bℓ)

)
.

where the intersection Ñ(X)⊗ Z[1ℓ ] ∩ H̃(X,Bℓ) is taken in Ñ(X)⊗Qℓ and the intersection
⋂

ℓ

is taken in Ñ(X̃)⊗Q. In particular, the lattice Ñ(X ) only depends on the associated Gm-gerbe
XGm, up to a lattice isomorphism.

Proof. This is [10, Proposition 3.5]. □

Similarly, one can define the relative extended twisted Mukai lattice on smooth projective
families of twisted abelian surfaces.

3.4. A filtered Torelli Theorem. In [41, 42], Lieblich and Olsson have introduced the filtered
derived equivalence and demonstrated that K3 surfaces with such equivalence are isomorphic.
We will present an analogous result for (twisted) abelian surfaces. The proof is simpler than
for K3 surfaces, as the bounded derived category of a (twisted) abelian surface corresponds to
a generic K3 category [34].

Let X → X be a µn-gerbe. The rational numerical Chow ring CH∗
num(X )Q ∼= CH∗

num(X)Q
is equipped with a codimension filtration

FiliCH∗
num(X )Q :=

⊕
k≥i

CHk
num(X )Q.

As X is a surface, we have a natural identification Ñ(X )Q ∼= CH∗
num(X )Q.

Definition 3.4.1. Let ΦP : D(1)(X ) → D(1)(Y ) be a Fourier–Mukai transform. The derived
equivalence ΦP is called filtered if its induced isomorphism ΦP

CH : Ñ(X )
∼−→ Ñ(Y ) preserves the

induced codimension filtrations.
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Since the isomorphism Ñ(X )
∼−→ Ñ(Y ) preserves the Mukai pairing, it is not hard to see that

ΦP is filtered if and only if it sends the Mukai vector (0, 0, 1) to (0, 0,±1). At the cohomological
level, the codimension filtration on H̃(X)[1ℓ ] (the prime ` depends on the choice of `-adic or
crystalline twisted Mukai lattice) is given by F i = ⊕r≥iH

2r(X)[1ℓ ]. The filtration on H̃(X ,Zℓ)
is defined by

F iH̃(X ,Zℓ) = H̃(X ,Zℓ) ∩ F iH̃(X,Zℓ)[
1

`
].

By choosing a B-field lift Bℓ, a direct computation shows that the graded pieces of F • are

Gr0F H̃(X ,Zℓ) =

{(
r, rBℓ,

rB2
ℓ

2

) ∣∣∣∣ r ∈ H0(X,Zℓ(−1))
}
,

Gr1F H̃(X ,Zℓ) =
{
(0, b, b ·Bℓ)

∣∣ b ∈ H2(X,Zℓ)
} ∼= H2(X,Zℓ),

Gr2F H̃(X ,Zℓ) =
{
(0, 0, s)

∣∣ s ∈ H4(X,Zℓ(1))
} ∼= H4(X,Zℓ(1)).

(3.4.1)

Lemma 3.4.2. A Fourier–Mukai transform ΦP : D(1)(X ) → D(1)(Y ) is filtered if and only if
its cohomological realization is filtered for any B-field liftings.

Proof. A Fourier–Mukai transform that is filtered implies that it is cohomologically filtered.
This is because the map

exp(Bℓ) · clH : Ñ(X )→ H̃(X ,Zℓ)

preserves the filtrations for any B-field lift B of [XGm ].
For the converse, just notice that ΦP is filtered if and only if the induced map ΦP

CH takes
the vector (0, 0, 1) to (0, 0,±1). As ΦP is cohomologically filtered for B, the cohomological
realization of ΦP preserves the graded piece Gr2F in (3.4.1). This implies that ΦP

CH takes (0, 0, 1)
to (0, 0,±1). □
Proposition 3.4.3 (filtered Torelli theorem for twisted abelian surfaces). Suppose k = k̄ is such
that char(k) 6= 2. Let X → X and Y → Y be µn-gerbes on abelian surfaces. The following
statements are equivalent.

(1) There is an isomorphism between the associated Gm-gerbes XGm and YGm.
(2) There is a filtered Fourier–Mukai transform ΦP : D(1)(X )→ D(1)(Y ).

Proof. For untwisted case, i.e. X = X and Y = Y , this is exactly [30, Proposition 3.1]. Here
we extend it to the twisted case. As one direction is obvious, it suffices to show that (2) can
imply (1).

Firstly, we claim that all semi-rigid objects in D(1)(Y ) are in Coh(1)(Y ) up to shift. According
to Remark 3.13 in [34], it is sufficient to show that there are no stable spherical sheaves in
Coh(Y (1)). If E is a spherical Y (1)-twisted sheaf with rank E = 0, then c1(E)2 = −χ(E , E) = −2,
which is impossible for the abelian surface. Suppose that there is a stable spherical Y -twisted
sheaf E with Mukai vector v = (r, c, s) such that r > 0. Choose a polarization H ∈ Pic(Y ) so
that E is H-semistable. Let MH(Y , v) be the moduli space of H-semistable Y -twisted sheaves
on Y . Then MH(Y , v) is non-empty. Consider the determinant morphism to the Picard stack
of invertible Y (r)-twisted sheaves

det : MH(Y , v)→ Pic(Y (r)).

For any L ∈ Pic0(Y ) and E ∈MH(Y , v), the tensor product E ⊗ L is still a stable Y -twisted
sheaf with the Mukai vector v. Thus, the map det dominates the component of Pic(Y (r)) con-
taining det(E), which is of dimension 2. Therefore, the deformation theory of twisted coherent
sheaf implies

dimk Ext
1(E , E) ≥ dimMH(Y , v) ≥ 2,

contradicting the assumption that E is spherical.
Let ΦP : Db(X (1)) → Db(Y (1)) be a Fourier–Mukai transform. For a closed point x ∈ X,

denote
Px := ΦP(k(x)) = P|{x}×Y ,
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by image of the skyscraper sheaf k(x). Since k(x) is semi-rigid, Px is also semi-rigid. The
previous discussion implies that there is an integer m such that Hi(Px) = 0 for any i 6= m and
closed point x ∈ Y . Therefore, there is a X (−1) ∧ Y -twisted sheaf E ∈ Coh(X (−1) × Y ) such
that P ∼= E [m].

Suppose ΦP is filtered. Composing it with the shift functor F 7→ F [1] if necessary, we may
assume that the cohomological realization of ΦP sends (0, 0, 1) to (0, 0, 1). In this case, Ex is just
a skyscraper sheaf on {x} × Y . The same argument as in [16, Corollary 5.3] or [31, Corollary
5.22, 5.23] shows that there is an isomorphism f : X → Y such that f∗([YGm ]) = [XGm ]. □

3.5. Twisted FM partners via moduli space of twisted sheaves. In the rest of this
section, we will always assume that k = k̄ and char(k) = p 6= 2. Let X → X be a twisted
abelian surface over k.

Definition 3.5.1 ([71, Definition 0.1]). Let v = (r, c, s) ∈ Ñ(X ) be a primitive Mukai vector
such that v2 = 0. If one of the following holds

(1) r > 0.
(2) r = 0, c is effective and s 6= 0.
(3) r = c = 0 and s > 0.

then v is called positive.

We denote by MH(X , v) the moduli stack of H-semistable X -twisted sheaves with the
Mukai vector v ∈ Ñ(X ), where H is a v-generic ample divisor on X. Here, we record a well-
known non-emptiness criterion for MH(X , v) when X is not supersingular. We will extend this
result to the supersingular case in Proposition 3.6.6, using the theory of supersingular twistor
space.

Proposition 3.5.2 (Minamide–Yanagida–Yoshioka, Bragg–Lieblich). Suppose X is an abelian
surface over k that is not supersingular. If v is positive with v2 = 0, then for any v-generic
polarization H, the coarse moduli space MH(X , v) is an abelian surface, and the moduli stack
MH(X , v) is a Gm-gerbe on MH(X , v).

Proof. For the case where char(k) = 0, Yoshioka has proved this result in [72, Theorem 3.16].
When char(k) = p > 2, the nonemptiness can be seen through a lifting argument, as shown

in [8, Proposition 4.1.20] and [46, Proposition A.2.1]. Since X is of finite height when char(k) =
p > 0, Lemma 2.3.1, implies exists a DVR V with residue field k and a projective lifting
XV → XV of X → X over Spec(V ), together with an extension vV ∈ Ñ(XV ) and a polarization
HV ∈ NS(XV ) such that HV |Spec(k) = H. Consider the relative moduli space of twisted sheaves
MHV

(XV , vV ) over Spec(V ). Its (geometric) generic fiber is a moduli space of twisted sheaves
with positive Mukai vector in characteristic zero, which is nonempty by Yoshioka’s result. Thus
its special fiber, which is isomorphic MH(X , v), is also nonempty by Langton’s semi-stable
reduction theorem. □

The following is an extension of [30, Theorem 1.2].

Theorem 3.5.3. Assume k = k̄ with char(k) 6= 2. Let X → X and Y → Y be Gm-gerbes
over an abelian surface defined over k. Then D(1)(X ) ' D(1)(Y ) if and only if Y (−1) → Y

is isomorphic to the moduli stack MH(X , v) → MH(X , v) for some v ∈ Ñ(X ) and v-generic
polarization H.

Proof. For the "if" part, just note that the universal family of twisted sheaves on MH(X , v)×X
induces a derived equivalence.

For the other direction, suppose D(1)(X ) ' D(1)(Y ) are equivalent. We let

ΦP : D(1)(Y )→ D(1)(X )

be a Fourier–Mukai transform. Let v ∈ Ñ(X ) be the image of (0, 0, 1) ∈ Ñ(Y ) under ΦP . Up
to a shift, we can assume that v is a positive vector. By Proposition 3.5.2, MH(X , v) is an
abelian surface and MH(X , v)→MH(X , v) is a Gm-gerbe over it.
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Let E be a universal X -twisted sheaf on MH(X , v)×X , which is a (1, 1)-fold twisted sheaf
and induces a derived equivalence

ΦE : D(−1)(MH(X , v))→ D(1)(X ),

whose cohomological realization maps the Mukai vector (0, 0, 1) to v. Composing ΦE with the
derived equivalence

(ΦP)−1 ' ΦP∨
[2] : D(1)(X )→ D(1)(Y ),

we obtain a filtered derived equivalence from MH(X , v)(−1) to Y , which induces an isomor-
phism from MH(X , v)(−1) to Y by Theorem 3.4.3. □

3.6. Supersingular twisted abelian surfaces. Finally, we discuss the case of supersingular
twisted abelian surfaces. In this part, we extend the construction the supersingular twistor
space as [8] via the Ogus’s crystalline Torelli theorem for supersingular abelian (see [51, §2]).

Definition 3.6.1. Let p be a prime 6= 2. Let Λ be an indefinite p-elementary even lattice, i.e.,
• disc(Λ⊗Q) = −1,
• Λ∨/Λ is p-torsion.

Then |Λ∨/Λ| = p2σ0(Λ) for 1 ≤ σ0(Λ) ≤ n
2 and the integer σ0(Λ) is called the Artin invariant of

Λ. We define MΛ to be Ogus’ moduli space of characteristic subspaces of pΛ∨/pΛ.

When Λ has the signature (1, n − 1), n ≥ 2, as shown in [61, Section 1], Λ is uniquely
determined by its Artin invariant. When n = 6, we may call it supersingular abelian surface
lattice. This is because for every supersingular abelian surface X, its Néron-Severi lattice NS(X)
is a supersingular abelian surface lattice (cf. [52, (1.6)].

From now on, let us assume that Λ is a supersingular abelian surface lattice. Denote σ0 for
the Artin invariant σ0(Λ) for simplicity. We set

Λ̃ = Λ⊕ U(p),

where U(p) is the twisted hyperbolic plane generated by the vectors e and f such that e2 =

f2 = 0 and e · f = −p. Let M ⟨e⟩
Λ̃
⊆ M

Λ̃
be the moduli space of characteristic subspaces of

pΛ̃∨/pΛ̃ that do not contain e.

Proposition 3.6.2 ([8, §3]). The moduli stack M ⟨e⟩
Λ̃

and MΛ are representable by schemes over
Fp, which are smooth of dimensions σ0 and σ0 − 1, respectively. Moreover, there is a smooth
morphism

πe : M
⟨e⟩
Λ̃
→MΛ.

whose fiber at a closed point is isomorphic to a group scheme with connected components A1.

Proof. The first assertion is given in [52, Proposition 4.6]. Let us sketch the construction of πe.
Given any K̃ ∈M ⟨e⟩

Λ̃
(T ) over an Fp-scheme T , a characteristic subspace

K ⊆ (pΛ∨/pΛ)⊗OT

can be formed as the image of K̃∩(e⊥⊗OT ) in (e⊥/e)⊗OT (see [8, Lemma 3.1.9]). Consequently,
the map K̃ 7→ K defines a morphism

πe : M
⟨e⟩
Λ̃
→MΛ.

The rest of the assertion is a consequence of [8, Lemma 3.1.15 ]. □

Definition 3.6.3. The twistor line in M
Λ̃
⊗Fp k is an affine line A1 ⊂ M

Λ̃
⊗Fp k that is a

connected component of a fiber of πe over a k-point of MΛ(k) for some isotropic vector e ∈ Λ̃.
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The moduli functor SΛ of Λ-marked supersingular abelian surfaces is representable by a
locally separated and smooth algebraic space of dimension σ0 − 1 over k by the crystalline
Torelli theorem [51, Theorem 7.3] together with the argument in [52, Theorem 2.7]. Consider
the universal family of supersingular abelian surfaces

u : X → SΛ,

that is smooth with relative dimension 2. By Proposition 2.4.2, the higher direct image R2u∗µp
is representable by an algebraic group space over SΛ, denoted by

π : SΛ → SΛ.

The connected component of the identity S o
Λ ⊂ SΛ parameterizes the µp-gerbes which are not

essentially-trivial except the identity, on each Λ-marked supersingular abelian surface in SΛ(k).
Then there are (twisted) period morphisms following the approach in [52, §3].

Proposition 3.6.4. There are (twisted) period morphisms ρ : SΛ → MΛ := MΛ ⊗Fp k and
ρ̃ : S o

Λ →M
⟨e⟩
Λ̃

:=M
⟨e⟩
Λ̃
⊗Fp k such that the following commutative diagram is Cartesian

S o
Λ SΛ

M
⟨e⟩
Λ̃

MΛ

π|So
Λ

ρ̃Λ ρΛ

πe

(3.6.1)

Moreover, ρ and ρ̃ are étale surjective when p > 2.

Proof. This was proved by Bragg and Lieblich in the case of supersingular K3 surfaces (cf. [8,
§3 and §5]. But everything works for supersingular abelian surfaces as well. We shall mention
that one can also use the Kummer construction to deduce the statement from the K3 case.

For the ease of the reader, let us briefly sketch the construction of ρ̃Λ and ρΛ. Let (X, η) be a
Λ-marked supersingular abelian surface. The K3-crystal H2

crys(X/W ) determines a characteristic
subspace

KH2(X) := ker(NS(X)⊗ k → H2
crys(X/W )⊗ k).

Then ρΛ(X, η) is the characteristic subspace η−1(KH2(X)) in (pΛ∨/pΛ)⊗Fp k. Suppose X → X
is a µp-gerbe. We define

K
H̃(X )

:= ker(Ñ(X )⊗ k → H̃(X ,W )⊗W k) ⊂ pÑ(X )∨

pÑ(X )
⊗ k

as the strictly characteristic subspace of H̃(X ,W ). Note that there is an extended map of K3
crystals:

Λ̃⊗ Zp
η̃−→ Ñ(X )⊗ Zp → H̃(X ,W )

where η̃ is given by
e 7→ (0, 0, 1) c 7→ η(c) f 7→ (p, 0, 0)

for any c ∈ Λ. Then ρ̃Λ(X , η) = η̃−1(K
H̃(X )

) is the characteristic subspace of (pΛ̃∨/pΛ̃)⊗k. □

Remark 3.6.5. In one view, the moduli space MΛ is a crystalline analog of the classical period
domain. Let H be a supersingular K3 crystal. The associated Tate module TH ⊆ H is a
supersingular K3 Zp-lattice in the sense of Ogus (cf. [51, 3.13]). According to [51, Theorem
3.20], the functor

H ⇝ (TH ,KH)

where KH = ker(TH ⊗k → H⊗k) defines an equivalence between the category of supersingular
K3 crystals and the category of strictly characteristic subspaces of a supersingular K3 Zp-lattice.

Using the twisted period map, we can obtain the following.

Theorem 3.6.6. Let X → X be a µp-gerbe over a supersingular abelian surface X over k.
Then
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(1) If a primitive vector v ∈ Ñ(X ) is positive and isotropic, the coarse moduli space
MH(X , v) is an abelian surface.

(2) If Y → Y is another twisted abelian surface, D(1)(X ) ' D(1)(Y ) if and only if there is
an isomorphism

H̃(X ,W ) ∼= H̃(Y ,W )

of K3 crystals.
(3) There is a derived equivalence

D(1)(X0) ' Db(X)

where X0 → X0 is a µp-gerbe over the unique superspecial abelian surface X0.

Proof. For (1), if X → X is an essentially-trivial µp-gerbe over a supersingular abelian surface
X, this can be proved by a standard lifting argument (see also [24, Proposition 6.9]). When
X → X is non-trivial, we can take the universal family of µp-gerbes

f : X→ A1

on the connected component A1 ⊂ R2 u∗µp that contains X (cf. Corollary 2.4.5). The fibers of f
contain X → X and the trivial µp-gerbe over X. By taking the relative moduli space of twisted
sheaves (with suitable v-generic polarization) on X → A1, one can obtain the nonemptiness of
MH(X , v) from the case of essentially trivial gerbes.

For the proof of the forward direction of (2), we notice that by Remark 3.6.5, it is sufficient
to find an isomorphism between pairs(

Ñ(X ),K
H̃(X )

)
∼−→

(
Ñ(Y ),K

H̃(Y )

)
,

which is provided by the de Rham realization of the derived equivalence D(1)(X ) ' D(1)(Y ).
The proof of the other direction is identical to the case of K3 surfaces proved in [6, Theorem
3.5.5]. The key is that if H̃(X ,W ) ∼= H̃(Y ,W ), then there exists v ∈ Ñ(X ) such that the
induced isomorphism

H̃(MH(X , v)(−1),W ) ∼= H̃(Y ,W )

of K3 crystals sends (0, 0, 1) to (0, 0, 1). The assertion then essentially follows from Ogus’
crystalline Torelli theorem for supersingular abelian surfaces (cf. [51, Theorem 7.3]), as in [6,
Theorem 3.5.2]. We omit the details here.

For (3), due to (2), it suffices to find a µp-gerbe X0 → X0 such that there is a supersingular
K3 crystal isomorphism

H̃(X0,W ) ∼= H̃(X,W ).

By Remark 3.6.5, this is equivalent to find X0 → X0 and an isometry Ñ(X0)⊗Zp
∼= Ñ(X)⊗Zp

sending K
H̃(X0)

to K
H̃(X)

.
Let us give an explicit construction of X0 → X0 via the twisted period map. If X is

superspecial, no further proof is necessary. Suppose X is not superspecial. Then σ0(NS(X)) = 2
by [64, Proposition 3.7]. Let Λ be the supersingular abelian surface lattice with Artin invariant
2 and let η : Λ ∼−→ NS(X) be a Λ-marking. As shown in [61, Section 2] (see also [24, Proposition
6.1]), Λ = U(p)⊕Λ′ contains U(p) as a direct summand and the image of U(p) in (pΛ∨/pΛ)⊗k
is not contained in the strictly characteristic subspace ρΛ(X, η).

Note that the lattice Λ0 = U ⊕ Λ′ is a supersingular abelian lattice with Artin invariant 1.
There is a natural isomorphism

Ñ(X)
η⊕id−−−→ Λ⊕ U ∼= Λ0 ⊕ U(p) = Λ̃0. (3.6.2)

and we can identify K
H̃(X)

with ρΛ(X, η) via the isometry η ⊕ id. Let

K ⊆ (pΛ̃∨
0 /pΛ̃0)⊗ k

be the image of K
H̃(X)

through the map induced by (3.6.2). By our assumption, K does not
contain the image of some isotropic vector e ∈ U(p) and therefore can be viewed as a point in
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M
⟨e⟩
Λ̃0

(k). As ρ̃Λ0 is surjective, there is a Λ0-marked supersingular abelian surface (X0 → X0, η0)

such that ρ̃Λ0(X0, η0) = K. It is easy to see that X0 → X0 is as desired. □

4. Shioda’s Torelli theorem for abelian surfaces

In [63], Shioda discovered that there is a way to extract information about the 1st-cohomology
of a complex abelian surface from its 2nd-cohomology, called Shioda’s trick. This established a
global Torelli theorem for complex abelian surfaces via 2nd-cohomology, which is also a key step
in Pjateckii-Šapiro–Šafarevič’s proof of the Torelli theorem for K3 surfaces (cf. [57, §5 Lemma
4, §5 Theorem 1]).

The aim of this section is to generalize Shioda’s method to all fields and establish an isogeny
theorem for abelian surfaces via the 2nd-cohomology. We will deal with Shioda’s trick for Betti
cohomology, étale cohomology and crystalline cohomology separately.

4.1. Recap of Shioda’s trick for Hodge isometry. We first recall Shioda’s construction.
Suppose X is a complex abelian surface. Its singular cohomology ring H•(X,Z) is canonically
isomorphic to the exterior algebra ∧•H1(X,Z). Let V be a free Z-module of rank 4. We denote
by Λ the lattice (∧2V, q) where q : ∧2V×∧2V→ ∧4V ∼= Z is the wedge product. After choosing
a Z-basis {vi}1≤i≤4 for H1(X,Z), we have an isometry of Z-lattice Λ

∼−→ H2(X,Z). The set of
vectors

{vij := vi ∧ vj}0≤i<j≤4

clearly forms a basis of H2(X,Z), which will be called an admissible basis of A for its second
singular cohomology. For another complex abelian surface Y , a Hodge isometry

ϕ : H2(Y,Z) ∼−→ H2(X,Z)
will be called admissible if det(ϕ) = 1, with respect to some admissible bases on X and Y . It
is clear that the admissibility of a morphism is independent of the choice of admissible bases.

In terms of admissible bases, we can view ϕ as an element in SO(Λ). On the other hand, we
have the following exact sequence of groups

1→ {±1} → SL4(Z)
∧2

−→ SO(Λ) (4.1.1)
Shioda observed that the image of SL4(Z) in SO(Λ) is a subgroup of index two and does not
contain − idΛ. From this, he proved the following (cf. [63, Theorem 1])

Theorem 4.1.1 (Shioda). For any admissible integral Hodge isometry ψ, there is an isomor-
phism of integral Hodge structures

ψ : H1(Y,Z) ∼−→ H1(X,Z)
such that ∧2(ψ) = ϕ or −ϕ.

This is what we call “Shioda’s trick”. As we can assume that a Hodge isometry is admissible
after possibly taking the dual abelian variety for one of them (see Example 4.2.3 below), we
can obtain the Torelli theorem for complex abelian surfaces by using the weight two Hodge
structures, that is, X is isomorphic to Y or its dual Ŷ if and only if there is an integral Hodge
isometry H2(X,Z) ∼= H2(Y,Z) (cf. [63, Theorem 1]).

4.2. Admissible basis. To extend Shioda’s work to arbitrary fields, we must define admissi-
bility for different cohomology theories (e.g., étale and crystalline cohomology).

Let k be a field with char(k) = p ≥ 0. Suppose X is an abelian surface over k and ` ∤ p is a
prime. For simplicity of notations, we will denote H•(−)R for one of the following cohomology
theories:

(1) if k ↪→ C and R = Z or any number field E, then H•(X)R = H•(X(C), R) the singular
cohomology.

(2) if R = Zℓ or Qℓ, then H•(X)R = H•
ét(Xk̄, R), the `-adic étale cohomology.

(3) if char(k) = p > 0, then we can take R = W a Cohen ring of k or the fraction field K
of W , then H•(X)R = H•

crys(X/W ) or H•
crys(X/W )⊗K, the crystalline cohomology.
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There is an isomorphism between the cohomology ring H•(X)R and the exterior algebra
∧•H1(X)R. We denote by trX : H4(X)R

∼−→ R the corresponding trace map. Then the Poincaré
pairing 〈−,−〉 on H2(X)R can be realized as

〈α, β〉 = trX(α ∧ β).

Analogous to §4.1, a R-basis {vi} of H1(X)R will be called a d-admissible basis if it satisfies

trX(v1 ∧ v2 ∧ v3 ∧ v4) = d

for some d ∈ R∗. When d = 1, it will be called an admissible basis. For any d-admissible
(resp. admissible) basis {vi}, the associated R-basis {vij := vi ∧ vj}i<j of H2(X)R will also be
called d-admissible (resp. admissible).

Example 4.2.1. Let {v1, v2, v3, v4} be a R-linear basis of H1(X)R. Suppose

trX(v1 ∧ v2 ∧ v3 ∧ v4) = t ∈ R∗.

For any d ∈ R∗, there is a natural d-admissible R-linear basis {dt v1, v2, v3, v4}

Definition 4.2.2. Let X and Y be abelian surfaces over k.
• a R-linear isomorphism ψ : H1(X)R → H1(Y )R is d-admissible if it takes an admissible

basis to a d-admissible basis.
• a R-linear isomorphism ϕ : H2(X)R → H2(Y )R is d-admissible if

trY ◦ ∧2 (ϕ) = d trX

for some d ∈ R∗, or equivalently, it sends an admissible basis to a d-admissible basis.
When d = 1, it will also be called admissible.

The set of d-admissible isomorphisms are denoted by Isomad,(d)(Hi(X)R,H
i(Y )R) accordingly.

For any isomorphism ϕ : H2(X)R
∼−→ H2(Y )R, let det(ϕ) be the determinant of the matrix

with respect to some admissible bases. It is not hard to see det(ϕ) is independent of the choice
of admissible bases, and ϕ is admissible if and only if det(ϕ) = 1.

Example 4.2.3. Let {vi} be an admissible basis of H1(X)R. For the dual abelian surface X̂,
the dual basis {v∗i } with respect to the Poincaré pairing naturally forms an admissible basis of
X̂, under the identification H1(X)∨R

∼= H1(X̂)R. Let

ϕP : H2(X)R → H2(X̂)R

be the isomorphism induced by the Poincaré bundle P on X × X̂. A direct computation (see
e.g. [31, Lemma 9.3]) shows that ϕP is nothing but

−D: H2(X)R
∼−→ H2(X)∨R

∼= H2(X̂)R,

where D is the Poincaré duality. For an admissible basis {vi} of X, its R-linear dual {v∗i } with
respect to Poincaré pairing forms an admissible basis of X̂. By our construction, we can see

D(v12, v13, v14, v23, v24, v34) = (v∗34,−v∗24, v∗23, v∗14,−v∗13, v∗12),

which implies that D is of determinant −1 under these admissible bases. Thus the determinant
of ϕP is not admissible.

Example 4.2.4. Let f : X → Y be an isogeny of degree d for some d ∈ Z≥0 between two
abelian surfaces. If d is coprime to `, then it will induce an isomorphism

f∗ : H2(Y )Zℓ

∼−→ H2(X)Zℓ
,

that is d-admissible. If, in addition, d = n2, then 1
nf

∗ will be an admissible Zℓ-integral isometry
with respect to the Poincaré pairing. Moreover, if d = k4, then f

k will be a Z(ℓ)-isogeny such
that its pull-back is admissible integral.
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Example 4.2.5. Suppose X is an abelian surface over a perfect field k with char(k) = p > 0.
Then F -crystal H1(X)W together with the trace map

trX : H4(X)W
∼−→W

form an abelian crystal (of genus 2) in the sense of [51, §6]. We can see that an isomorphism
of F -crystals H1(X)W

∼−→ H1(Y )W is admissible if and only if it is an isomorphism between
abelian crystals, i.e., it is compatible with trace maps.

4.3. More on admissible basis of F -crystals. In contrast to `-adic étale cohomology, the
semilinear structure on crystalline cohomology from its Frobenius is more tricky to work with.
Therefore, it seems necessary for us to spend more words on the interaction of Frobenius with
admissible bases.

Suppose k is a perfect field with char(k) = p > 0, we have the following Frobenius pull-back
diagram:

X

X(1) X

Spec(k) Spec(k)

F
(1)
X

FX

σ

Via the natural identification H1
crys(X

(1)/W ) ∼= H1
crys(X/W )⊗σW , the σ-linearization of Frobe-

nius action on H1
crys(X/W ) can be viewed as the injective W -linear map

F (1) :=
(
F

(1)
X

)∗
: H1

crys(X
(1)/W ) ↪→ H1

crys(X/W ).

If k is not perfect, then after passing to W (k̄) or equivalently choosing a Frobenius lift on the
Cohen ring W , we also get a Frobenius action on H1

crys(X/W ), whose linearization is given by
the relative Frobenius morphism.

There is a decomposition H1
crys(X/W ) = H0(X)⊕H1(X) such that

F (1)
(
H1

crys(X
(1)/W )

)
∼= H0(X)⊕ pH1(X), (4.3.1)

and rankWHi = 2 for i = 0, 1, which is related to the Hodge decomposition of the de Rham
cohomology of X/k by Mazur’s theorem; see [4, §8, Theorem 8.26].

The Frobenius map can be expressed in terms of admissible basis. We can choose an admis-
sible basis {vi} of H1

crys(X/W ) such that

v1, v2 ∈ H0(X) and v3, v4 ∈ H1(X).

Then {pαivi} := {v1, v2, pv3, pv4} forms an admissible basis of H1
crys(X

(1)/W ) under the identi-
fication (4.3.1), since trX(1) ◦ ∧4 F (1) = p2σW ◦ trX . In term of these basis, the Frobenius map
can be written as

F (1)(pαivi) =
∑
j

cijp
αjvj , (4.3.2)

where CX = (cij) forms an invertible 4× 4-matrix with coefficients in W .
Suppose Y is another abelian surface over k, ψ : H1

crys(X/W )→ H1
crys(Y/W ) is an admissible

map, and ψ(1) is the induced map ψ ⊗σ W : H1
crys(X

(1)/W ) → H1
crys(Y

(1)/W ). Denote by M

and M ′ the matrix of ψ and ψ(1) with respect to the chosen admissible bases, respectively.

Lemma 4.3.1. The map ψ commutes with Frobenius if and only if CYM
′C−1

X =M .

Proof. By definition, ψ commutes with Frobenius if and only if (F (1)
Y )∗ ◦ψ(1) = ψ ◦ (F (1)

X )∗. The
statement is then clear from (4.3.2) . □
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4.4. Generalized Shioda’s trick. Let us review some basic properties of the special orthog-
onal group scheme over an integral domain. Our main reference is [17, Appendix C].

Let Λ be an even Z-lattice of rank 2n. Then we can associate it with a vector bundle Λ on
Spec(Z) with constant rank 2n equipped with a quadratic form q over Spec(Z) obtained from
Λ. Then the functor

A 7→
{
g ∈ GL(ΛA)

∣∣qA(g · x) = qA(x) for all x ∈ ΛA

}
is representable by a Z-subscheme of GL(Λ), denoted by O(Λ). There is a homomorphism
between the Z-group schemes

DΛ : O(Λ)→ Z/2Z,

which is called the Dickson morphism (see p313 in loc. cit. for the definition). Roughly speaking,

DΛ(g) =

{
0 if g is a product of an even number of reflections
1 if g is a product of an odd number of reflections

for a point g ∈ O(Λ) over a field in characteristic zero. The Dickson morphism is surjective
as Λ is even and its construction is compatible with any base change (see Proposition C.2.8 in
loc. cit.). The special orthogonal group scheme over Z with respect to Λ is defined to be the
kernel of DΛ, which is denoted by SO(Λ). Moreover, we have

SO(Λ)Z[ 1
2
]
∼= ker (det : O(Λ)→ Gm)Z[ 1

2
] .

It is well-known that SO(Λ) → Spec(Z) is smooth in relative dimension n(n−1)
2 and with con-

nected fibers; see Theorem C.2.11 in loc. cit. for example.
For any `, the special orthogonal group scheme

SO(ΛZℓ
) ∼= SO(Λ)Zℓ

is smooth over Zℓ with connected fibers, which implies that its generic fiber SO(ΛQℓ
) is con-

nected. Thus, SO(ΛZℓ
) is clearly connected as a group scheme over Zℓ as SO(ΛQℓ

) ⊂ SO(ΛZℓ
)

is dense.
The special orthogonal group scheme admits a universal covering (i.e., a simply connected

central isogeny)
Spin(Λ)→ SO(Λ).

See Appendix C.4 in loc. cit. for construction.

Lemma 4.4.1. Let V be free Z-module of rank 4 and Λ = ∧2V. Let R be a ring of coefficients
as listed in §4.2. There is an exact sequence of smooth R-group schemes

1→ µ2,R → SL(V)R
∧2(−)R−−−−−→ SO(Λ)R → 1.

(as fppf-sheaves if 1
2 /∈ R.) Moreover, there is an exact sequence

1→ {± id4} → SL(V)(R)
∧2(−)R−−−−−→ SO(Λ)(R)→ R∗/(R∗)2. (4.4.1)

Proof. For the first statement, it suffices to assume R = Spec(k̄) for an algebraically closed field
k̄, where it is clear from a computation. Note that we have an exact sequence on rational points
(cf. [27, Proposition 3.2.2])

1→ µ2(R)→ SL(V)(R)→ SO(Λ)(R)→ H1(Spec(R), µ2).

Notice that for the rings of coefficients listed in §4.2, we have Pic(R)[2] = 0. Therefore,

H1
fl(Spec(R), µ2)

∼= R∗/(R∗)2

from the Kummer sequence for µ2.
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For the last statement, it is sufficient to see that there is an isomorphism of R-group schemes
SL(V)R

∼−→ Spin(Λ)R such that the following diagram commutes

SL(V )(R) Spin(Λ)(R)

SO(Λ)(R)

∼

The group scheme SL(V) is simply-connected (as its geometric fibers are semisimple algebraic
group of type A3). Thus, the central isogeny SL(V)R → SO(Λ)R forms the universal covering
of SO(Λ)R, which induces an isomorphism SL(V)R

∼−→ Spin(Λ)R by using the Isomorphism
Theorem over a general ring (see, e.g.,[17, Theorem 6.1.16, 6.1.17]). □
Remark 4.4.2. When R = Zℓ, we have

Z∗
ℓ/(Z∗

ℓ )
2 ∼=

{
{±1} if ` 6= 2,

{±1} × {±5} if ` = 2.

Thus the image of SL(V)(Zℓ) is a finite index subgroup in SO(Λ)(Zℓ).

Remark 4.4.3. When R =W (k), we have

W (k)∗/(W (k)∗)2 ∼=

{
{1, ε} if k = Fps for p > 2, s ≥ 1

{1} if k = k̄ or ks = k, char(k) > 2.

where ε ∈ Z such that ε 6≡ y2 mod ps for an integer y, as W (k) is Henselian. Thus, the wedge
map SL(V)(W )→ SO(Λ)(W ) is surjective when k = k̄.

Let X and Y be abelian surfaces over k. Let VR = H1(X)R. We can see the set

Isomad,(d)(H1(X)R,H
1(Y )R)

is a (right) SL(VR)-torsor if it is nonempty. The wedge product provides a natural map

∧2 : Isomad,(d)
(
H1(X)R,H

1(Y )R
)
→ Isomad,(d)

(
H2(X)R,H

2(Y )R
)
.

Let {vi} be an admissible basis of H1(X)R and let {v′i} be a d-admissible basis of H1(Y )R,
respectively. There is an d-admissible isomorphism ψ0 ∈ Isomad,(d)(H1(X)R,H

1(Y )R) such that
ψ0(vi) = v′i. For a d-admissible isometry ϕ : H2(X,R)→ H2(Y,R), we can see

ϕ = ∧2(ψ0) ◦ g, for some g ∈ SO(ΛR).

In this way, any d-admissible isomorphism ϕ can be identified with the (unique) element
g ∈ SO(Λ)(R) when the admissible bases are fixed. This allows us to deal with d-admissible iso-
morphisms group-theoretically. In particular, we have the following notion of the spinor norm.

Definition 4.4.4. The spinor norm of the d-admissible isomorphism ϕ is defined to the image
of g under SN: SO(Λ)(R)→ R∗/(R∗)2, denoted by SN(ϕ).

Lemma 4.4.5. The spinor norm SN(ϕ) is independent of the choice of admissible bases.

Proof. For different choice of admissible bases, we can see the resulted g̃ = KgK−1 for some
K ∈ SO(ΛR). Therefore, SN(g̃) = SN(g). □
Remark 4.4.6. When R is a field, the spinor norm can be computed by the Cartan–Dieudonné
decomposition. That means we can write any g ∈ SO(Λ)(R) as a composition of reflections:

Rbn ◦Rbn−1 ◦ · · · ◦Rb1

for some non-isotropic vectors b1, · · · , bn ∈ ΛR, and SN(g) =
[
(b1)

2 · · · (bn−1)
2(bn)

2
]
.

Lemma 4.4.7. The d-admissible isomorphism ϕ is a wedge of some d-admissible isomorphism
ψ : H1(X,R)→ H1(Y,R) if and only if SN(ϕ) = 1.
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Proof. The exact sequence (4.4.1) shows that if SN(ϕ) = SN(g) = 1, then there is some h ∈
SL(VR) such that ∧2(h) = g. Thus, we can take ψ = ψ0 ◦ h when SN(ϕ) = 1, and see that

∧2(ψ) = ∧2(ψ0) ◦ ∧2(h) = ϕ.

The converse is clear. □

4.4.1. Isogenies category. Recall that the isogeny category of abelian varieties AVQ,k consists of
all abelian varieties over a field k as objects, and the homomorphism sets are

HomAVQ,k
(X,Y ) := HomAVk(X,Y )⊗Z Q,

where HomAVk(X,Y ) is the abelian group of homomorphisms from X to Y with the natural
addition. We may also write Hom0(X,Y ) for HomAVQ,k

(X,Y ) if there is no confusion in the
definition field k.

Definition 4.4.8. Let R be a commutative ring with units. A R-isogeny from X to Y is an
invertible element f ∈ HomAVk(X,Y ) ⊗ R i.e., there is an g ∈ HomAVk(Y,X) ⊗ R such that
f ◦ g = idY and g ◦ f = idX .

A Q-isogeny is called a quasi-isogeny, while Z(ℓ)-isogeny is called a prime-to-` quasi-isogeny.
For any (prime-to-`) quasi-isogeny f , we can find a minimal integer n (resp. ` ∤ n) such that

nf : X → Y

is an isogeny (resp. of degree prime-to-`).

When k = C, with the uniformization of complex abelian varieties, we have a canonical
bijection

HomAVQ,C(X,Y )
∼−→ HomHdg

(
H1(Y,Q),H1(X,Q)

)
,

where the right-hand side is the set of Q-linear morphisms that preserve Hodge structures. Then
the integer n for f is also the minimal integer such that (nf)∗(H1(Y,Z)) ⊆ H1(X,Z).

4.5. Shioda’s trick for Hodge isogenies. Suppose k = C. Let d be an integer. A Hodge
isogeny of degree d is an isomorphism of Q-Hodge structures

ϕ : H2(X,Q)
∼−→ H2(Y,Q)

such that
〈x, y〉 = d〈ϕ(x), ϕ(y)〉.

In particular, if d = 1, then it is the classical Hodge isometry that we usually talk about.
Clearly, a d-admissible rational Hodge isomorphism is a Hodge isogeny of degree d. In terms of
spinor norms, we can generalize Shioda’s theorem 4.1.1 to admissible rational Hodge isogenies.

Proposition 4.5.1 (Shioda’s trick on admissible Hodge isogenies).
(1) A d-admissible Hodge isogeny of degree d

ϕ : H2(X,Q)
∼−→ H2(Y,Q)

is a wedge of some rational Hodge isomorphism ψ : H1(X,Q)
∼−→ H1(Y,Q), if its spinor

norm is trivial. In this case, the Hodge isogeny is induced by a quasi-isogeny of degree
d2.

(2) When d = 1, any admissible Hodge isometry ϕ : H2(X,Q)
∼−→ H2(Y,Q) is induced by an

isogeny f : Y → X of degree n2 for some integer n such that ϕ = f∗

n .

Proof. Under the assumption of (1), we can find a d-admissible isomorphism ψ by applying the
Lemma 4.4.7. It remains to prove that ψ preserves the Hodge structure, which is essentially
the same as in [63, Theorem 1].

For (2), we suppose the spinor norm SN(ϕ) = nQ∗2 ∈ Q∗/Q∗2. Let E = Q(
√
n). We can see

that the base change H2(X,E)
∼−→ H2(Y,E) is a Hodge isometry with coefficients in E such that

SN(ϕ) = 1 ∈ E∗/(E∗)2. Then by applying Lemma 4.4.7, we will obtain an admissible (fixing
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the admissible bases for H1(X,Q) and H1(Y,Q)) Hodge isomorphism ψ : H1(X,E)
∼−→ H1(Y,E).

Let
σ : a+ b

√
n⇝ a− b

√
n

be the generator of Gal(E/Q). As we have fixed the Q-linear admissible bases, the wedge map

SL4(E)
∧2

−→ SO(Λ)(E)

is defined over Q, and so is σ-equivariant. Let g be the element in SL4(E) that corresponds to
ψ. As ∧2(g) ∈ SO(Λ) ⊂ SO(ΛE), we can see

(∧2(σ(g)) = σ(∧2(g)) = ∧2(g).
which implies that σ(g)g−1 = ± id4 since ker(∧2) = {± id4}. If σ(g) = g, then g ∈ SL4(Q) and
the statement is trivially valid. If σ(g) = −g, then g0 =

√
ng is lying in GL4(Q). Let

ψ0 : H
1(X,Q)→ H1(Y,Q)

be the corresponding element of g0 in Isomad,(n2)
(
H1(X,Q),H1(Y,Q)

)
. As ∧2ψ0 = nϕ is a

Hodge isogeny, part (1) then implies that ψ0 is also a Hodge isomorphism. Thus, ψ0 increases
to a quasi-isogeny f0 : Y → X and we have

ϕ = ∧2(ψ) = f∗0
n

: H2(X,Q)→ H2(Y,Q).

Replacing f0 by multiplication mf0 for some integer m, we can get an isogeny of degree (m2n)2.
□

Remark 4.5.2. If a Hodge isometry ψ : H2(X,Q)
∼−→ H2(Y,Q) is not admissible, that is, its

determinant is −1 with respect to some admissible bases, then we can take its composition with
the isometry ψP induced by the Poincaré bundle as in Example 4.2.3. After that, we can see
that ψP ◦ ψ is admissible and is induced by an isogeny f : Ŷ → X.

4.6. `-adic and p-adic Shioda’s trick. For the integral `-adic étale cohomology, we have the
following statement similar to Shioda’s trick for integral Betti cohomology.

Proposition 4.6.1 (`-adic Shioda’s trick). Suppose ` 6= 2. For any d-admissible Zℓ-linear
isomorphism

ϕℓ : H
2
ét(Yks ,Zℓ)

∼−→ H2
ét(Xks ,Zℓ),

there are an integer u and a (u2d)-admissible Zℓ-isomorphism ψℓ, such that ∧2(ψℓ) = uϕℓ.
Moreover, if ϕℓ is Gal(ks/k)-equivariant, then ψℓ is also Gal(ks/k)-equivariant after replacing
k with some finite extension.

Proof. One can choose an element u ∈ (Z \ {0}) ∩ Z∗
ℓ that is not a square in Zℓ, e.g., those

satisfying equation u
ℓ−1
2 ≡ −1 mod ` as ` 6= 2. As Z∗

ℓ/(Z∗
ℓ )

2 ∼= {±1} for any ` 6= 2, ϕℓ or uϕℓ

is of spinor norm one. Then the first statement follows from Lemma 4.4.7.
Suppose ϕℓ is Gal(ks/k)-equivariant. We may assume ∧2(ψℓ) = ϕℓ for simplicity. For any

g ∈ Gal(ks/k), we have
∧2(g−1ψℓg) = g−1 ∧2 (ψℓ)g = ∧2(ψℓ).

Therefore, g−1ψℓg = ±ψℓ. By passing to a finite extension k′/k, we always have g−1ψℓg = ψℓ

for all g ∈ Gal(ks/k′) which proves the assertion. □
For F -crystals attached to abelian surfaces, we can also use Shioda’s trick.

Proposition 4.6.2 (p-adic Shioda’s trick). Let k be a finite field or an algebraically closed field,
such that char(k) = p > 2. For any d-admissible W -linear isomorphism

ϕp : H
2
crys(Y/W )

∼−→ H2
crys(X/W ),

there exist an integer u and a W -linear isomorphism ψp : H
1
crys(Y/W )

∼−→ H1
crys(X/W ) that is

(u2d)-admissible, satisfying ∧2(ψp) = uϕp. Furthermore, if k is algebraically closed, then u = 1.
Moreover, if ϕp is compatible with Frobenius and Fp2 ⊆ k, then there is ξ ∈ Z∗

p2 ⊆W (k) such
that ξψp is compatible with Frobenius and ξ2 ∈ Z∗

p.



26 ZHIYUAN LI AND HAITAO ZOU

Proof. The first statement follows from a similar reason as in Proposition 4.6.1 as W ∗/(W ∗)2 ⊆
{1, ε} (see Remark 4.4.3).

For the second statement, we assume ∧2(ψp) = ϕp. If ϕp commutes with the Frobenius
action, then we have

∧2(C−1
X · ψ

(1)
p · CY ) = ϕp.

as in §4.3. Thus C−1
X · ψ

(1)
p · CY = ±ψ(1)

p , which implies

ψp ◦ F (1)
X = ±F (1)

Y ◦ ψ(1)
p

by Lemma 4.3.1.
If F (1)

X ◦ ψ(1)
p = ψp ◦ F (1)

Y , then we need to do nothing. If F (1)
X ◦ ψ(1)

p = −ψp ◦ F (1)
Y , then we

can take ξ ∈ Z∗
p2 ⊆W (k) such that ξp−1 = −1. This implies

F
(1)
X ◦ (ξψp)

(1) = ξpF
(1)
X ◦ ψ = (ξψp) ◦ F (1)

Y .

Note that ξ2 ∈ Z∗
p as σ(ξ2) = ξ2 and ξ2p+2 = 1. Therefore, we can conclude. □

Combined with Tate’s isogeny theorem, we have the following direct consequences of Propo-
sitions 4.6.1 and 4.6.2. It includes a special case of Tate’s conjecture.

Corollary 4.6.3. Suppose k is a finitely generated field over Fp with p > 2. Let ` 6= 2 be a
prime not equal to p.

(1) For any admissible isometry of Gal(ks/k)-modules

ϕℓ : H
2
ét(Yks ,Zℓ)

∼−→ H2
ét(Xks ,Zℓ),

we can find a Zℓ-isogeny fℓ ∈ Homk′(Xk′ , Yk′)⊗Zℓ for some finite extension k′/k, which
induces uϕℓ for some integer u prime-to-`. In particular, ϕℓ is algebraic.

(2) If k is finite, then for any admissible isometry

ϕp : H
2
crys(Y/W )

∼−→ H2
crys(X/W ),

which is compatible with Frobenius, we can find a Zp-isogeny fp ∈ Homk′(Xk′ , Yk′)⊗Zp

over some finite extension k′/k, such that
εf∗p |H2

crys(Y/W ) = uϕp

for some prime-to-p integer u and ε ∈ Z∗
p. In particular, ϕp is algebraic.

Proof. For (1), Proposition 4.6.1 implies that there is an isomorphism

ψℓ : H
1
ét(Yks ,Zℓ)

∼−→ H1
ét(Xks ,Zℓ),

that induces uϕℓ, which is Gal(ks/k)-equivariant after a finite extension of k. Then fℓ exists by
the following canonical bijection (cf. [73] and [22, VI, §3 Theorem 1])

Hom0(X,Y )⊗ Zℓ
∼−→ HomGal(ks/k)

(
H1

ét(Yks ,Zℓ),H
1
ét(Xks ,Zℓ)

)
.

For (2), we may assume that Zp2 ⊆W (k) after taking a finite extension of k. The Proposition
4.6.2 implies that there is an isomorphism

ψp : H
1
crys(Y/W )

∼−→ H1
crys(X/W )

that induces uϕp, and ξ ∈ Z∗
p2 such that ξψp is compatible with Frobenius.

Since k a finite field, there are canonical isomorphisms
Hom0(X,Y )⊗ Zp

∼−→ Homk (X[p∞], Y [p∞])
∼−→ HomF,V

(
H1

crys(Y/W ),H1
crys(X/W )

)
. (4.6.1)

Here the first isomorphism is from p-adic Tate’s isogeny theorem (cf. [19, Theorem 2.6]) and the
second from the faithfulness of Dieudonné functor over W (cf. [18, Theorem]). The canonical
bijection (4.6.1) implies that ξψp is induced by a Zp-isogeny fp ∈ Hom0(X,Y )⊗ Zp. Therefore

f∗p |H2
crys(Y/W ) = ξ2uϕp.

The Zp-isogeny fp is what we require. □
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Remark 4.6.4. In [74], Zarhin introduces the notion of almost isomorphism. Two abelian
varieties over k are called almost isomorphic if their Tate modules Tℓ are isomorphic as Galois
modules (replaced by p-divisible groups when ` = p). The proposition 4.6.1 and 4.6.2 imply
that it is possible to characterize almost isomorphic abelian surfaces by their 2nd-cohomology
groups.

5. Derived isogeny in characteristic zero

In this section, we follow [25] and [33] to prove the twisted Torelli theorem for abelian surfaces
over algebraically closed fields of characteristic zero.

5.1. Over C: Hodge isogeny versus derived isogeny. Let X and Y be complex abelian
surfaces. Throughout this section, let Λ = U⊕3 be the direct sum of three hyperbolic lattices.

Definition 5.1.1. A rational Hodge isometry ϕ : H2(X,Q)→ H2(Y,Q) is called reflective if it
is a reflection on Λ along a non-isotropic vector b ∈ Λ:

Rb : ΛQ
∼−→ ΛQ x 7→ x− 2(x, b)

(b, b)
b,

after choosing the markings H2(X,Z) ∼= Λ and H2(Y,Z) ∼= Λ.

A key lemma is

Lemma 5.1.2. Any reflective Hodge isometry ϕ induces a Hodge isometry on twisted Mukai
lattices

ϕ̃ : H̃(X,Z;B)→ H̃(Y,Z;B′),

for some B ∈ H2(X,Q) and B′ = −ϕ(B) such that the restriction of ϕ̃Q : H̃(X,Q)
∼−→ H̃(Y,Q)

on H2(X,Q) is equal to ϕ.

Proof. This is due to the work in [33, §1.2]. Since this is a purely linear-algebraic argument for
twisted Mukai lattices, it works for abelian surfaces without changes. Let us briefly recall the
construction of ϕ̃. By definition, there are markings f : H2(X,Z) ∼= Λ and g : H2(Y,Z) ∼= Λ such
that the composition

ΛQ
f−1

−−→ H2(X,Q)
φ−→ H2(Y,Q)

g−→ ΛQ

is a reflection Rb, with b ∈ Λ a primitive vector.
Let B = f−1(b)

n ∈ H2(X,Q) and B′ = g−1(b)
n ∈ H2(Y,Q), where n = b2

2 . The map

ϕ̃ : H̃(X,Z;B)→ H̃(Y,Z;B′),

defined by sending a vector (r, c, s) to (n(B, c)− r − ns, ϕ(c)− n((B, c)− s)B′,−s) is a Hodge
isometry. In particular,

(0, c, (B, c)) 7→ (0, ϕ(c), (B′, ϕ(c)),

(0, 0, 1) 7→ (−n,−nB′,−1),
which gives last assertion. □

The following result characterizes the reflective Hodge isometries between abelian surfaces.
The idea of the proof is based on [33, Theorem 1.1], along with some necessary modifications
for abelian surfaces.

Theorem 5.1.3. Let X and Y be two complex abelian surfaces. If there is a reflective Hodge
isometry

ϕ : H2(X,Q)
∼−→ H2(Y,Q),

then up to sign, ϕ is induced (in the sense of §3.1) by a derived isogeny

Db(X) ∼ Db(Y ). (5.1.1)
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Proof. According to Lemma 5.1.2, there is a Hodge isometry

ϕ̃ : H̃(X,Z;B)
∼−→ H̃(Y,Z;B′),

whose restriction on H2(X,Q) is just ϕ. Let vB′ = (−n,−nB′,−1) be the image of the Mukai
vector (0, 0, 1) under ϕ̃. From our construction, the Mukai vector

v = exp(−B′) · vB′ = (−n, 0, 0) ∈ H̃(Y,Z)

satisfies vB′ = exp(B′) · v. We can assume that v is positive (see Definition 3.5.1) up to the
shift of D(1)(Y ).

Let Y → Y be a Gm-gerbe which admits a B-field lift B′. For some v-generic polarization H,
the moduli stack MH(Y , v) of Y -twisted sheaves on Y with Mukai vector v forms a Gm-gerbe on
its coarse moduli space MH(Y , v). Let E be a universal (1, 1)-twisted sheaf on Y ×MH(Y , v).
It induces a twisted Fourier–Mukai transform

ΦE : D(−1)(MH(Y , v))→ D(1)(Y ),

(cf. [72, Theorem 4.3]) and a Hodge isometry

ϕE : H̃(MH(Y , v),Z;B′′)
∼−→ H̃(Y,Z;B′),

where B′′ is a B-field lift of MH(Y , v)(−1) →MH(Y , v). The composition

(ϕE)−1 ◦ ϕ̃ : H̃(X,Z;B)
∼−→ H̃(MH(Y , v),Z;B′′), (5.1.2)

defines a Hodge isometry, which maps the Mukai vector (0, 0, 1) to (0, 0, 1) and preserves the
Mukai pairing. In addition, it sends (1, 0, 0) to (1, b, b

2

2 ) for some b ∈ H2(Y,Z). Changing B′′

by B′′ + b, one can obtain a Hodge isometry that simultaneously maps (1, 0, 0) to (1, 0, 0) and
(0, 0, 1) to (0, 0, 1). This restricts to a Hodge isometry

H2(X,Z) ∼−→ H2(MH′(Y , v),Z). (5.1.3)
If Hodge isometry (5.1.3) is admissible, then we can apply Shioda’s Torelli Theorem to the

abelian surfaces (Theorem 4.1.1) to conclude that there is an isomorphism

f : MH′(Y , v)
∼−→ X

such that (ϕE)−1 ◦ ϕ̃ = f∗ up to sign. Take X → X as the Gm-gerbe MH′(Y , v)(−1) →
MH′(Y , v). Then the Hodge realization of the derived equivalence

ΦE ◦ f∗ : D(1)(X )
∼−→ D(1)(Y ) (5.1.4)

is ϕ̃ up to sign.
Otherwise, the composition

H2(X̂,Z) −D−−→ H2(X,Z) ∼−→ H2(MH(Y , v),Z)

is admissible as explained in Example 4.2.3, which can be realized as the pull-back under an
isomorphism f : MH(Y , v)

∼−→ X̂ up to sign. Thus, the Hodge realization of derived equivalence
f∗ ◦ ΦP : Db(X)

∼−→ Db(MH(Y , v)) yields Hodge isometry (5.1.3), where P is the Poincaré
bundle. We can consider the following derived isogeny

Db(X)
f∗◦ΦP
−−−−→Db(MH(Y , v))

D(−1)(MH(Y , v))
ΦE
−−→ D(1)(Y ).

(5.1.5)

From the construction, its rational Hodge realization on second cohomology yields ϕ up to
sign. □
Remark 5.1.4. If ϕ is induced from a reflection of a vector with norm 2n, let X → X and
Y → Y be the equivalent twisted abelian surfaces obtained in Theorem 5.1.3. Then we have

[X ]n = exp(nB) = 1 ∈ Br(X),

which implies [X ] ∈ Br(X)[n]. Similarly, the order of [Y ] divides n.
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Next, we are going to show that any rational Hodge isometry can be decomposed into a chain
of reflective Hodge isometries. This is a special case of Cartan–Dieudonné theorem which says
that any element g ∈ SO(ΛQ) can be decomposed as products of reflections:

g = Rb1 ◦Rb2 ◦ · · · ◦Rbn , (5.1.6)
such that bi ∈ Λ, and (bi)

2 6= 0. From the surjectivity of period map [63, Theorem II], for any
rational Hodge isometry

H2(X,Q)
∼−→ H2(Y,Q),

we can find a sequence of abelian surfaces {Xi} with Λ-markings and Hodge isometries

ϕi : H
2(Xi−1,Q)

∼−→ H2(Xi,Q),

where X0 = X and Xn = Y , such that ϕi is induced by some reflection Rbi ∈ O(Λ ⊗ Q). We
can arrange them as (1.1.1):

H2(X,Q) H2(X1,Q)

H2(X1,Q) H2(X2,Q)

...
H2(Xn−1,Q) H2(Y,Q).

φ1

φ2

φn

(5.1.7)

As a consequence, we get

Corollary 5.1.5. If there is a rational Hodge isometry ϕ : H2(X,Q)
∼−→ H2(Y,Q), then there

is a derived isogeny from X to Y , which induces ϕ up to sign as in (5.1.7).

Remark 5.1.6. An application of Corollary 5.1.5 is that any rational Hodge isometry between
abelian surfaces is algebraic, which is a special case of Hodge conjecture on product of two
abelian surfaces. Unlike the case of K3 surfaces, the Hodge conjecture for product of abelian
surfaces was known for a long time. See, for example, [60, Theorem 3.15].

Corollary 5.1.7. There is a rational Hodge isometry H2(X,Q)
∼−→ H2(Y,Q) if and only if there

is a derived isogeny from Km(X) to Km(Y ).

Proof. Any rational Hodge isometry induces a rational isometry of Néron–Severi lattice NS(X)Q '
NS(Y )Q. Let T(−) be the transcendental part of H2(−). Applying Witt’s cancellation theorem,
we can see

H2(X,Q) ' H2(Y,Q)⇔ T(X)Q ' T(Y )Q,

as Hodge isometries. According to [33, Theorem 0.1], Km(X) is derived isogenous to Km(Y ) if
and only if there is a Hodge isometry T(Km(X))Q ' T(Km(Y ))Q. Then the statement is clear
from the fact that there is a canonical integral Hodge isometry T(X)(2) ' T(Km(X)) (cf. [48,
Proposition 4.3(i)]). □

5.2. prime-to-` Hodge isometries.

Definition 5.2.1. We say that a rational Hodge isometry
ϕ : H2(X,Q)

∼−→ H2(Y,Q)

is prime-to-` if it descends to an isometry H2(X,Z(ℓ))
∼−→ H2(Y,Z(ℓ)).

An easy observation is

Lemma 5.2.2. Assume ϕ : H2(X,Q)
∼−→ H2(Y,Q) is a reflective Hodge isometry, induced by a

primitive vector b ∈ Λ. Then ϕ is prime-to-` if and only if ` ∤ n = (b)2

2 .

Proof. One direction is obvious. For the other, suppose ϕ is prime-to-`. By definition, there
are markings H2(X,Z) ∼= Λ and H2(X,Z) ∼= Λ such that the isometry

Λ⊗Q ∼= H2(X,Q)
φ−→ H2(Y,Q) ∼= Λ⊗Q
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is the reflection Rb ∈ O(Λ⊗Q). As ϕ is prime-to-`, the reflection Rb is lying in O(Λ⊗ Z(ℓ)).
If ` | n, one must have ` | (x, b) for any x ∈ Λ. However, this is contradictory, as Λ is

unimodular and any primitive vector has divisibility 1. □

Another useful tool is as follows.

Lemma 5.2.3 (prime-to-` Cartan–Dieudonné decomposition). Let Λ be an integral lattice over
Z whose reduction mod ` is still non-degenerate. Any orthogonal matrix A ∈ O(Λ)(Z(ℓ)) ⊂
O(Λ)(Q), with (` > 2), can be decomposed into a sequence of prime-to-` reflections.

Proof. To prove the assertion, we will follow the proof of [62] to refine Cartan–Dieudonné
decomposition for any field of characteristic 6= 2. In general, if Λk is a quadratic space on a
field k of characteristic 6= 2 with the Gram matrix G, let I be the identity matrix.

The proof of Cartan–Dieudonné decomposition in [62] relies on the following facts: for any
element A ∈ O(Λk), we have

i) A is a reflection if rank(A− I) = 1 (cf. [62, Lemma 2]);
ii) Suppose that rank(A−I) > 1. If S = G(A−I) is not skew symmetric, then there exists

a ∈ Λ satisfying atSa 6= 0 and

S + St 6= 1

atSa
(Sa · atS + Sta · atSt).

In this case rank(ARb − I) = rank(A − I) − 1 and G(ARb − I) is not skew symmetric
with b = (A− I)a satisfying b2 = −2atSa (cf. [62, Lemma 4, Lemma 5]).

iii) If S = G(A− I) is skew symmetric, then there exists b ∈ Λ such that G(ARb− I) is not
skew symmetric (cf. the proof of [62, Theorem 2]).

Then we can decompose A as a series of reflections using ii) repeatedly. In our case, it suffices
to show that if k = Q and A is coprime to `, i.e. nA is integral for some n coprime to `, then

i’) A is a prime-to-` reflection if rank(A− I) = 1;
ii’) Suppose that rank(A − I) > 1. If the matrix S = G(A − I) modulo ` is not skew

symmetric, then there exists a vector a ∈ Λ satisfying ` ∤ atSa, and

S + St 6= 1

atSa
(Sa · atS + Sta · atSt).

In this case, Rb is prime-to-` with b = (A− I)a, rank(ARb − I) = rank(A− I)− 1 and
G(ARb − I) is not skew symmetric;

iii’) If the matrix S = G(A−I) modulo ` is skew symmetric, then there exists b ∈ Λ such that
ARb is coprime to ` and the modulo ` reduction of G(ARb − I) is not skew symmetric.

For i’), this is obvious.
For ii’), if the modulo ` reduction Ḡ(Ā− Ī) of G(A− I) is not skew symmetric, we can apply

ii) to the matrix Ā ∈ O(ΛFℓ
) to obtain a non-zero vector ā ∈ ΛFℓ

such that ātS̄ā 6= 0 ∈ Fℓ and

S̄ + S̄t 6= 1

ātS̄ā
(S̄ā · ātS̄ + S̄tā · ātS̄t). (5.2.1)

Let a ∈ Λ be a lifting of ā. It is easy to see that this is as desired.
For iii’), the argument is similar to ii’). □

As a result, we get the following.

Theorem 5.2.4. Let ` > 2 be a prime. If there is a prime-to-` rational Hodge isometry
ϕ : H2(X,Q)

∼−→ H2(Y,Q), then there exists a prime-to-` derived isogeny from X to Y , which
can induce ϕ up to sign. Moreover, if X and Y are prime-to-` derived isogenus, then there is a
prime-to-` derived isogeny, in which the orders of Gm-gerbes are all prime-to-`.

Proof. By using the prime-to-` Cartan–Dieudonné decomposition given in Lemma 5.2.3, one
can decompose the Hodge isometry

ϕ : H2(X,Z(ℓ))
∼−→ H2(Y,Z(ℓ)),
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into a chain of prime-to-` reflective Hodge isometries. The Lemma 5.2.2 implies that the lift ϕ̃
extends to an integral isometry

H̃(X,Z(ℓ))
∼−→ H̃(Y,Z(ℓ))

In the first case of the proof in Theorem 5.1.3, the derived isogeny (5.1.4) induces ϕ̃ up to sign,
and is thus prime-to-`. In the second case, the derived isogeny (5.1.5) is also prime-to-`, since
the Poincaré dual

H̃(X,Z) ∼−→ H̃(X̂,Z)
is integral and switches (0, 0, 1) and (1, 0, 0).

If X and Y are prime-to-` derived isogenous, then there is an isometry T(X) ⊗ Z(ℓ)
∼=

T(Y )⊗Z(ℓ). Since ` > 2, there is a prime-to-` rational Hodge isometry H2(X,Z(ℓ))
∼−→ H2(Y,Z(ℓ))

by [47, Theorem 3.2]. We can use the prime-to-` Cartan–Dieudonné decomposition again to
obtain a derived isogeny, in which all the reflexive Hodge isometries are prime-to-`. Then we
can conclude the assertion by Lemma 5.2.2 and Remark 5.1.4. □

5.3. Isogeny versus derived isogeny. Let us now describe derived isogenies through suitable
isogenies.

It is well known that the functor Hom(X,Y ) of group homomorphisms from X to Y (not
just as scheme morphisms) is representable by an étale group scheme over k (see [21, (7.14)] for
example). Therefore, via Galois descent, we have

HomAVk̄
(Xk̄, Yk̄)

∼−→ HomAVK̄
(XK̄ , YK̄), (5.3.1)

for any algebraically closed field K̄ ⊃ k. A similar statement holds for derived isogenies.

Lemma 5.3.1. Let X and Y be abelian surfaces defined over k with char(k) = 0. Let K̄ ⊇ k
be an algebraically closed field containing k. Let k̄ be the algebraic closure of k in K̄. Then if
XK̄ and YK̄ are twisted derived equivalent, so are Xk̄ and Yk̄.

Proof. As XK̄ is twisted derived equivalent to YK̄ , by Theorem 3.5.3, there exist finitely many
abelian surfaces X0, X1, . . . , Xn defined over K̄ with X0 = XK̄ and

Xi
∼=MHi(Xi−1, vi) YK̄

∼=MHn(Xn, vn)

for some [Xi−1] ∈ Br(Xi−1)[r]. Let us construct abelian surfaces over k̄ to connect Xk̄ and Yk̄
as follows:

Set X ′
0 = Xk̄, then we take X ′

1 = MH′
1
(X ′

0 , v
′
1) where X ′

0 ,H
′
1 and v′1 are the descent of

X0,H1 and v through the isomorphisms Br(XK̄)[r] ∼= Br(Xk̄)[r], NS(XK̄) ∼= NS(Xk̄) and
H̃(XK̄) ∼= H̃(Xk̄). The invariance of Brauer group and (`-adic)Mukai lattice under extension
k̄ ⊆ K̄ is from the smooth base change theorem. For Néron–Severi group, see [44, Proposition
3.1]. Then inductively, we can define X ′

i as the moduli space of twisted sheaves MH′
i
(X ′

i−1, v
′
i)

(or its dual, respectively) over k̄. Note that we have natural isomorphisms

(MH′
i
(X ′

i−1, v
′
i))K̄

∼=MHi(Xi−1, vi)

over K̄. In particular, (MH′
i
(X ′

n, v
′
i))K̄

∼= YK̄ . It follows that MH′
i
(X ′

n, v
′
i)
∼= Yk̄. □

For any abelian surface XC over C, the spreading out argument shows that there is a finitely
generated field k ⊂ C and an abelian surface X over k such that X ×k C ∼= XC. We have the
following Artin comparison

Hi
ét(Xk̄,Zℓ) ∼= Hi(XC,Z)⊗Z Zℓ, (5.3.2)

for any i ∈ Z and ` a prime. Suppose Y is another abelian surface defined over k. Suppose
f : YC → XC is a prime-to-` quasi-isogeny. By definition, it induces an isomorphism of Z(ℓ)-
modules

f∗ : H1(XC,Z)⊗ Z(ℓ)
∼−→ H1(YC,Z)⊗ Z(ℓ),
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such that there is a commutative diagram

Hi(XC,Z)⊗ Z(ℓ) Hi(YC,Z)⊗ Z(ℓ)

Hi
ét(Xk̄,Zℓ) Hi

ét(Yk̄,Zℓ)

∼

∼

for any i, under the comparison (5.3.2). For the converse, we have the following simple fact
given by a faithfully flat descent of modules along Z(ℓ) ↪→ Zℓ and the `-adic Shioda thick.

Lemma 5.3.2. A (quasi-)isogeny f : YC → XC is prime-to-` if and only if it induces an iso-
morphism of integral `-adic realizations

f∗ : H2
ét(Xk̄,Zℓ)

∼−→ H2
ét(Yk̄,Zℓ).

Inspired by Shioda’s trick for Hodge isogenies 4.5.1, we introduce the following notions.

Definition 5.3.3. Let X and Y be g-dimensional abelian varieties over k.
• X and Y are (prime-to-`) principally isogenous if there is a (prime-to-`) isogeny f from
X to Y of square degree, that is, deg(f) = d2 for some d ∈ Z. This f is called a principal
isogeny.
• An isogeny f : X → Y is quasi-liftable if f can be written as the composition of finitely

many isogenies that are liftable to characteristic zero.

Now, we can state the main result in this section, which yields in particular Theorem 1.2.1.

Theorem 5.3.4. Suppose char(k) = 0. Let ` > 2 be a prime. The following statements are
equivalent:

(1) X is (prime-to-`) principally isogenous to Y over k̄.
(2) X and Y are (prime-to-`) derived isogenous over k̄.

Proof. (1) ⇒ (2): we can assume that f : X → Y is a principal isogeny defined over a finitely
generated field k′. By embedding k′ into C, two complex abelian surfaces XC and YC are derived
isogenous since there is a rational Hodge isometry

1

n
f∗ ⊗Q : H2(YC,Z)⊗Q ∼= H2(XC,Z)⊗Q

where deg(f) = n2. By Lemma 5.3.1, one can conclude that Xk̄ and Yk̄ are derived isogenous,
with rational Hodge realization 1

nf
∗ ⊗Q.

If f is a prime-to-` isogeny, the map 1
nf

∗ restricts to an isomorphism

H2(YC,Z)⊗ Z(ℓ)
∼−→ H2(XC,Z)⊗ Z(ℓ).

The assertion then follows from Theorem 5.2.4.
To deduce (2)⇒ (1), we may assume X and Y are derived isogenous over a finitely generated

field k′. Embedding k′ into C, XC and YC are derived isogenous as well by Lemma 5.3.1.
According to Remark 3.1.2, there is a Hodge isometry

ϕ : H2(YC,Q)
∼−→ H2(XC,Q). (5.3.3)

According to Example 4.2.3, we can assume ϕ is admissible after replacing X by its dual X̂. By
Proposition 4.5.1, they are principally isogenous over C. It follows that X and Y are principally
isogenous over k̄ by (5.3.1).

If Db(X) ∼ Db(Y ) is prime-to-`, then we can choose a motive isomorphism h2(X) ' h2(Y )
whose `-adic realization ϕℓ is integral by the cancellation theorem over Zℓ (see [54, Theorem
92:3]). The principal isogeny that induces ϕ is prime-to-` by Lemma 5.3.2. This proves the
assertion. □
5.4. Proof of Corollary 1.2.2. Let us summarize all the results which conclude Corollary
1.2.2. Using an argument similar to the one in Theorem 5.3.4, we can reduce them to the case
k = C.



DERIVED ISOGENIES AND ISOGENIES FOR ABELIAN SURFACES 33

(i)⇔ (ii). This is Theorem 5.3.4.

(i)⇔ (vi). This is Corollary 5.1.5.

(vi)⇔ (vii)⇔ (viii). It follows from the Witt cancellation Theorem.

(i)⇔ (iii). This is Corollary 5.1.7.

(ii)⇒ (iv)⇒ (v). This is from the computation in [25, Proposition 4.6]. In fact, one may take
the correspondence

Γ :=
⊕
i

Γ2i : h
even(X)

∼−→ heven(Y ),

where
Γ2i :=

1

ni
f∗ ◦ π2iX : h2i(X)→ h2i(Y ),

and f : X → Y is the given principal isogeny.

(v) ⇒ (ii). Let Γ: heven(X)
∼−→ heven(Y ) be an isomorphism of Frobenius algebra objects.

The Betti realization of its second component is a Hodge isometry by the Frobenius condition
(cf. [25, Theorem 3.3]). Thus, X and Y are derived isogenous by Corollary 5.1.5, and hence are
principally isogenous.

6. Derived isogeny in positive characteristic

In this section, we prove the twisted derived Torelli theorem for abelian surfaces over odd
characteristic fields. The primary strategy is to lift everything to characteristic zero. Through-
out this section, we let k denote an algebraically closed field with characteristic p > 3.

6.1. Lifting of derived isogenies and quasi-isogenies. Let us start with a lifting result for
derived isogenies, which is the only place we may require p > 3.

Proposition 6.1.1. Let X0 → X0 and Y0 → Y0 be twisted abelian surfaces over k, which are
of finite height. If there is a derived equivalence Φ0 : D

(1)(X0) → D(1)(Y0), then there exists a
discrete valuation ring V whose residue field is k and twisted abelian surfaces

XV XV

Spec(V )

and
YV YV

Spec(V )

over V so that
• the special fibers are geometrically isomorphic to X0 → X0 and Y0 → Y0 respectively.
• there is a Fourier–Mukai transform ΦV : D(1)(XV ) → D(1)(YV ) whose Fourier-Mukai

kernel restricting to X × Y induces Φ0.
Moreover, if Φ0 is prime-to-p and p > 3, the derived equivalence ΦK : D(1)(XK) → D(1)(YK)
on the generic fiber is also prime-to-p where K is the fraction field of V .

Proof. The proof proceeds similarly to [10, Theorem 5.8], which proves the existence of liftings
of derived isogenies between K3 surfaces. By Theorem 3.5.3, we know that that

X
(−1)
0

∼= MH(Y0, v)

is a moduli stack of Y0-twisted coherent sheaves for some vector v ∈ Ñ(Y0). By Lemma 2.3.1,
we can find a DVR V and a projective lift YV → YV over V such that NS(YV ) ∼= NS(Y0). Let
HV be the element in NS(YV ) that extends H. Following the description of twisted extended
Néron–Severi lattice as in Proposition 3.3.2, we can see Ñ(YV ) ∼= Ñ(Y0) and hence the twisted
Mukai vector v can be extended over V , still denoted by v.

Let X
(−1)
V = MHV

(YV , v) be the relative moduli stack of XV -twisted coherent sheaves. The
universal object in D(−1,1)(XV ×YV ) induces a derived equivalence ΦV : D(1)(XV )→ D(1)(YV )
as desired.
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For the last assertion, we need to prove that the p-adic realization of ΦK is integral. This can
be deduced from a similar argument as in the proof of Theorem 1.5 in [10], based on Cais–Liu’s
crystalline cohomological description for the integral p-adic Hodge theory (cf. [13, 14]). Let us
sketch the proof. As Φ is prime-to-p, its cohomological realization restricts to an isometry of
F -crystals

ϕ̃p : H
even
crys (X0/W ) ' Heven

crys (Y0/W )

by our definition. The base extension ϕ̃p⊗K can be identified with the de Rham cohomological
realization of ΦK

ϕ̃K : Heven
dR (XK/K) ' Heven

dR (YK/K)

by Berthelot–Ogus comparison (cf. [3, Corollary 2.5] or [26, Theorem B.3.1]). It also pre-
serves Hodge filtrations. Let S be the p-completion of the divided power envelope of the pair
(W JuK, ker(W JuK→ OK)). Then the map

ϕ̃p ⊗W S : Heven
crys (X0/S)

∼−→ Heven
crys (Y0/S) (6.1.1)

is an isomorphism of strongly divisible S-lattices (cf. [13, §4]). If p > 3, according to [13,
Theorem 5.4], one can apply Breuil’s functor on (6.1.1) to see that φK restricts to an Zp-integral
Gal(K̄/K)-equivariant isometry Heven

ét (XK̄ ,Zp)
∼−→ Heven

ét (YK̄ ,Zp). □
Remark 6.1.2. The technical requirement for p > 3 is needed in [13, Theorem 4.3 (3),(4)].
When OK = W (k) is unramified, this condition can be released to p > 2 by using Fontaine’s
result [23, Theorem 2 (iii)]. In general, when p = 3, a possible approach is to prove Shioda’s
trick as in §4 for strongly divisible S-lattices (cf. [11, Definition 2.1.1]), which can reduce the
statement to crystalline Galois representations of Hodge–Tate weight one.

Next, one can lift separable isogenies between abelian surfaces.

Proposition 6.1.3. Let f : X0 → Y0 be a separable isogeny between two abelian surfaces over
k. Let W = W (k) be the ring of Witt vectors. Then there exist liftings XW → Spec(W ) and
YW → Spec(W ) such that isogeny f can be lifted to an isogeny fW : XW → YW such that
deg f = deg fW . In particular, every prime-to-p isogeny can be lifted to a prime-to-p isogeny.

Proof. According to [55, Proposition 11.1], there is a projective lifting XW → Spec(W ) of X0.
Given that f is separable, ker f ⊂ X0 constitutes a finite étale group scheme over k, which is
liftable. Choosing a lifting GW ⊂ XW of ker f , we obtain an isogeny

fW : XW → YW := XW /GW ,

which serves as a lifting of f . If f is prime-to-p, then we have ker fW ⊆ XW [n] for some n that
is coprime to p. Consequently, fW is also prime-to-p. □

6.2. Specialization of prime-to-p derived isogenies. Next, we shall show that prime-to-p
geometrically derived isogenies are preserved under reduction. The idea is to show that the
specialization of a moduli space of stable twisted sheaves on an abelian surface or K3 surface
remains a moduli space.

Theorem 6.2.1. Let V be a DVR with residue field k and K = Frac(V ). Let XV → Spec(V )
and YV → Spec(V ) be projective abelian surfaces or K3 surfaces over Spec(V ) satisfying

NS(XK̄) ∼= NS(Xk) (6.2.1)
where Xk is the special fiber of XV → Spec(V ). If their generic fibers XK and YK are (geomet-
rically) prime-to-p derived isogenies, so are the special fibers Xk and Yk.

Proof. With Theorem 5.2.4, it is sufficient to consider the case where there is a derived equiva-
lence

ΦV : D(1)(XK̄)
∼−→ D(1)(YK̄)

for some prime-to-p Gm-gerbes XK → XK and YK → YK . From Theorem 3.5.3, we know that
there is an isomorphism

YK̄
∼= MH(XK̄ , vK)(−1),
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for some twisted Mukai vector vK ∈ Ñ(XK) and HK ∈ NS(XK̄) being v-generic. Up to taking
a finite extension, we may assume that everything can be defined over K.

We claim that there exists a Gm gerbe XV → XV whose restriction to Spec(K) is XK → XK .
It suffices to show that the class [XK ] ∈ Br(XK) can be extended to an element in Br(XV ).
By the Chinese remainder theorem, we may assume ord([XK ]) = `n for some prime ` 6= p. For
each prime ` 6= p, from the Kummer sequence, we have the following commutative diagram

0 Pic(XV )/`
n H1

ét(XV , µℓn) Br(XV )[`
n] 0

0 Pic(XK)/`n H1
ét(XK , µℓn) Br(XK)[`n] 0

The second vertical morphism is an isomorphism by smooth and proper base change. Therefore,
Br(XV )[`

n]→ Br(XK)[`n] is surjective, which proves the claim.
By our assumption (6.2.1), we can pick extensions vV ∈ Ñ(XV ) and HV ∈ Pic(XV ) of vK and

HK . Let MHV
(XV , vV )→ Spec(V ) be the relative moduli space of HV -stable twisted sheaves.

Then we have the following commutative diagram

MHV
(XV , vV ) MHK

(XK , vK) YK YV

Spec(V ) Spec(K) Spec(K) Spec(V )

∼=

According to Matsusaka–Mumford [43, Theorem 1], the isomorphism between the generic
fiber can be extended to Spec(V ). In particular, Yk is isomorphic to MHk

(Xk, vk) where
vk = vV |Spec k and Hk = HV |Spec k. It follows that there is a prime-to-p derived equivalence
D(1)(Xk) ' D(−1)(MHk

(Xk, vk)). □
Remark 6.2.2. Our proof fails when the twisted derived equivalence is not prime-to-p. This
is because if the associated Brauer class α has order pn, the map

Br(XV )[p
n]→ Br(XK)[pn]

may not be surjective (cf. [59, 6.8.2]).

6.3. Proof of Theorem 1.4.1. When X or Y is supersingular, the assertion follows from
Proposition 3.6.6 (2). So we can assume that X and Y both have finite height.

(i′) ⇒ (ii′). By Proposition 6.1.1, we can find projective liftings XV → Spec(V ) and YV →
Spec(V ) of X and Y over some DVR V such that there is a prime-to-p twisted derived equiva-
lence between generic fibers XK and YK .

By Theorem 5.3.4, the generic fibers XK and YK are geometrically prime-to-p principally
isogenous. Up to a finite extension of K, we can find a prime-to-p principal isogeny fK : XK →
YK . The Néron extension property of smooth models XV , YV ([5, §7.3, Proposition 6]) ensures
that fK can be extended to an isogeny

fV : XV → YV .

The restriction fk : X → Y over the special fibers is still a principal isogeny and we can conclude
that fk is prime-to-p by using Tate’s spreading theorem for p-divisible groups (cf. [67, Theorem
4]).

(ii′)⇒ (i′). Suppose that there is an isogeny f : X → Y , which is prime-to-p of degree d2. By
Proposition 6.1.3, we can lift it to a prime-to-p isogeny of degree d2 over W :

fW : XW → YW .

Set K = Frac(W ). The induced isogeny fK between the generic fibers is a prime-to-p principal
isogeny, which induces a GK-equivariant isometry

f∗K
d

: H2
ét(YK̄ ,Zp)

∼−→ H2
ét(XK̄ ,Zp).
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By Theorem 5.3.4, there exists a prime-to-p derived isogeny Db(XK̄) ∼ Db(YK̄) whose p-adic
cohomological realization is f∗

K
d . The assertion follows from Theorem 6.2.1.

6.4. Further remarks. From the proof of Theorem 1.4.1 (i′) ⇒ (ii′), we can see that the
lifting-specialization argument also works for non prime-to-p derived isogenies. Thus we have

Theorem 6.4.1. Suppose X0 and Y0 are abelian surfaces over k with finite height. If X0 and
Y0 are derived isogenous, then they are quasi-liftable principally isogenous.

Moreover, we believe that the converse of Theorem 6.4.1 also holds.

Conjecture 6.4.2. Two abelian sufaces X0 and Y0 are derived isogenous over k if and only if
they are quasi-liftable principally isogenous.

For this conjecture, our approach remains valid provided that there is a specialization theorem
for non prime-to-p derived isogenies. According to the proof of Theorem 6.2.1, it suffices to
establish the existence of specialization of Brauer classes of order p. Adhering to the notations
in Theorem 6.2.1, this needs the restriction map

Br(XV )→ Br(XK)

is surjective. See Remark 6.2.2 for further details.

6.5. Derived isogeny for Kummer surfaces. We now proceed to explore the interrelations
between the derived isogenies of abelian surfaces and their associated Kummer surfaces. Us-
ing the lifting argument, the following theorem is an immediate consequence of the result in
characteristic 0.

Theorem 6.5.1. Assume p > 2. If X0 and Y0 are prime-to-p derived isogenous abelian sur-
faces over k, then the associated Kummer surfaces Km(X0) and Km(Y0) are prime-to-p derived
isogenous. Moreover, if there is a derived equivalence

Db(Km(X0), α0) ' Db(Km(Y0), β0) (6.5.1)
with ord(α0) and ord(β0) prime-to-p, then X and Y are prime-to-p derived isogenous.

Proof. For the first assertion, as before, we can quasi-lift the prime-to-p derived isogeny between
X and Y to characteristic 0. By Theorem 1.4.1 and Lemma 6.1.1, their liftings are geometrically
prime-to-p derived isogenous. According to [66, Corollary 4.3], we get that the associated
Kummer surfaces are prime-to-p derived isogenous. It follows from Theorem 6.2.1 that Km(X0)
and Km(Y0) are prime-to-p derived isogenous.

For the last assertion, if X0 and Y0 are supersingular, then α0 and β0 are trivial under our
assumptions. In this case, the result follows from [38, Theorem 1.2]. Suppose X0 or Y0 is of
finite height (then both are of finite height). According to [10, Theorem 5.8], we can find a
DVR V with residue field k and projective twisted K3 surfaces over V

(SV , αV )→ Spec(V ) and (S′
V , βV )→ Spec(V ),

satisfying that
• the special fibers are (Km(X0), α0) and (Km(Y0), β0) respectively,
• the generic fibers (SK , αK) and (S′

K , βK) are geometrically derived equivalent.
• NS(SK̄) ∼= NS(Km(X0)) and NS(S′

K̄
) ∼= NS(Km(Y0)).

Note that NS(SK) and NS(S′
K) contain Kummer lattices. As seen in the proof of Lemma

2.3.1, this implies that there exist projective liftings of X0 and Y0, denoted by XV → Spec(V )
and YV → Spec(V ), such that

SK̄
∼= Km(XK̄) and S′

K̄
∼= Km(YK̄).

Choose an embedding K ↪→ C, set XC = XK ⊗K C and YC = YK ⊗K C. Then we have a
prime-to-p Hodge isometry

H2(Km(XC),Z(p))→ H2(Km(YC),Z(p)) (6.5.2)
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induced from the prime-to-p derived equivalence. Based on the Kummer construction, for any
abelian surface XC, as p > 2, there is a natural Hodge isometry

H2(Km(XC),Z(p)) ∼= H2(XC,Z(p))⊕ (ΣXC ⊗ Z(p)),

where ΣXC
∼=

16⊕
i=1

Zei with (ei, ej) = −2δij is the Kummer lattice. Then one can obtain a Hodge

isometry
H2(XC,Z(p))→ H2(YC,Z(p))

from (6.5.2) through the Witt cancellation procedure. By Theorem 5.3.4, XK and YK are
geometrically prime-to-p derived isogenous. The assertion follows from Theorem 6.2.1. □
Remark 6.5.2. It is natural to consider if one can apply the lifting method to prove the
converse of Theorem 6.5.1. Specifically, one may wonder if Km(X0) and Km(Y0) are prime-to-p
derived isogenous, as are X and Y .

However, the issue is that the derived isogeny between Km(X0) and Km(Y0) is merely quasi-
liftable, not known to be liftable. In other words, although we can lift every derived equivalence
between twisted abelian surfaces or K3 surface to characteristic 0, we cannot necessarily find
some liftings of X0 and Y0 respectively such that the generic fibers of their associated Kummer
surfaces are prime-to-p geometrically derived isogenous.
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