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Abstract

The Shafarevich conjecture/question is about the finiteness of isomorphism classes of
a family of varieties defined over a number field with good reduction outside a finite
collection of places. For K3 surfaces, such a finiteness result was proved by Y. She. For
hyper-Kähler varieties, which are higher-dimensional analogues of K3 surfaces, André
proved the Shafarevich conjecture for hyper-Kähler varieties of a given dimension and
admitting a very ample polarization of bounded degree. In this paper, we provide
a unification of both results by proving the (unpolarized) Shafarevich conjecture for
hyper-Kähler varieties in a given deformation type. We also discuss the cohomological
generalization of the Shafarevich conjecture by replacing the good reduction condition
with the unramifiedness of the cohomology, where our results are subject to a certain
necessary assumption on the faithfulness of the action of the automorphism group on
cohomology. In a similar fashion, generalizing a result of Orr and Skorobogatov on
K3 surfaces, we prove the finiteness of geometric isomorphism classes of hyper-Kähler
varieties of CM type in a given deformation type defined over a number field with
bounded degree. A key to our approach to these results is a uniform Kuga–Satake
map, inspired by She’s work, and we study its arithmetic properties, which are of
independent interest.

1. Introduction

1.1 Background

Let K be a number field and S a finite set of places of K. The classical Hermite–Minkowski
theorem says that there are only finitely many extensions of K with a fixed degree that is
unramified outside S. The geometric generalization is the so-called Shafarevich question: given
a familyM of smooth projective varieties defined over K, we ask the following:
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Question 1.1 (Finiteness of varieties). Is the set ShafM(K,S) of K-isomorphism classes of vari-
eties inM defined over K and with good reduction outside S finite?

As the notation indicates, such question can be traced back to a famous conjecture of Sha-
farevich [72] for the family of smooth curves of a given genus (⩾ 2), which plays an important
role in Faltings’ proof of the Mordell conjecture in [21]. Such Shafarevich-type questions have
been investigated in various situations, where results fall into two categories: polarized versus
unpolarized.

For polarized varieties, i.e. varieties equipped with an ample line bundle, the question has an
affirmative answer in a number of cases:

– (Faltings [21]) Curves of a fixed genus g ⩾ 2, i.e. ShafMg(K,S) is a finite set.

– (Faltings [21]) Abelian varieties of a fixed dimension g and admitting a polarization of a
given degree d, i.e. ShafAg,d

(K,S) is a finite set.

– (Scholl [71]) del Pezzo surfaces.

– (André [5]) K3 surfaces admitting a polarization of a given degree.

– (André [5]) Hyper-Kähler varieties (with b2 > 3) of given dimension with a very ample
polarization of bounded degree; and similarly for more general “K3-type” varieties such as
cubic fourfolds.

– (Javanpeykar–Loughran [33]) Flag varieties.

– (Javanpeykar [31]) Canonically polarized surfaces fibered over a curve.

– (Javanpeykar–Loughran [34], [35]) Certain varieties “controlled” by abelian varieties (via
e.g. intermediate Jacobian): complete intersections of Hodge level⩽ 1, prime Fano threefolds
of index 2, sextic surfaces, etc.

– (Lawrence and Sawin [47]) Hypersurfaces, up to translation, in a given abelian scheme of
dimension ⩾ 4 over OK,S , representing a given ample class. This is based on the techniques
in Lawrence–Venkatesh [48].

These results can often be reinterpreted as the finiteness of OK,S-points in certain moduli spaces;
see works of Javanpeykar and his coauthors [36], [32], [37], [38] for related studies from this point
of view of arithmetic hyperbolicity.

The unpolarized Shafarevich conjecture is a much stronger statement that bypasses the re-
striction on polarizations (e.g. degree or natural embedding) in the finiteness statements in the
above polarized version. The first example is Zarhin’s result [85] which gives a positive answer
to Question 1.1 for abelian varieties of a given dimension g, i.e. the following set is finite:⋃

d

ShafAg,d
(K,S),

generalizing the aforementioned theorem of Faltings. As for K3 surfaces, Y. She [74] established
the unpolarized Shafarevich conjecture, strengthening André’s result:

Theorem 1.2 (She). The following set is finite:

ShafK3(K,S) =

{
X

∣∣∣∣∣ X is a K3 surface over K,
having good reduction outside
S

}
/ ∼=K .

The analogue of Zarhin’s trick for K3 surfaces also has its origin in Charles’ proof of the Tate
conjecture [19], as well as in Orr–Skorobogatov [66].
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More recently, the third author [77] proved an even stronger version of Theorem 1.2 by weak-
ening the good reduction condition to a condition on unramified places of the second cohomology
as Galois modules, hence establishing the so-called cohomological (unpolarized) Shafarevich con-
jecture for K3 surfaces. He also established the analogous results for bielliptic surfaces [78], En-
riques surfaces [79], and proper hyperbolic polycurves [61] (the last one, jointly with Nagamachi,
generalizes [31]).

1.2 Finiteness of hyper-Kähler varieties with bounded bad reduction

In this paper, we aim to generalize She’s result (Theorem 1.2) to higher-dimensional analogues
of K3 surfaces, which are hyper-Kähler varieties (see Section 2 for generalities on this type of
varieties). We propose the following conjecture. As before, we fix a number field K and a finite
set of places S. A smooth projective K-variety is called hyper-Kähler if the associated complex
variety is hyper-Kähler (for an/any embedding of K into C); see Section 2.

Conjecture 1.3 (Unpolarized Shafarevich conjecture for hyper-Kähler varieties). Given a posi-
tive integer n, there are only finitely manyK-isomorphism classes of 2n-dimensional hyper-Kähler
varieties defined over K and having good reduction outside S.

In this generality, Conjecture 1.3 seems out of reach, considering the topological difficulty that
even the finiteness of deformation classes of complex hyper-Kähler manifolds in a given dimension
is unknown. It is therefore natural to restrict ourselves to a given deformation type. Let M be
a deformation type of complex hyper-Kähler manifolds (e.g. M can be K3[n], Kumn, OG6, or
OG10). We say a hyper-Kähler variety X over K is of deformation type M , if X ×SpecK Spec(C)
is of deformation type M , for some embedding K ↪→ C; see Section 2.2.

The following Shafarevich set is the central object of study in this paper:

ShafM (K,S) =

{
X

∣∣∣∣∣ X is a hyper-Kähler variety over K of defor-
mation typeM , having good reduction outside
S

}
/ ∼=K . (1.1)

Generalizing the cohomological Shafarevich conjecture for K3 surfaces proposed by the third
author in [77], let us also consider the following cohomological Shafarevich set, which is larger
than (1.1):

ShafhomM (K,S) =

{
X

∣∣∣∣∣ X is a hyper-Kähler variety over K of defor-
mation type M , with H2

ét(XK̄ ,Qℓ) unramified
outside S

}
/ ∼=K . (1.2)

Here, we say a Gal(K/K)-module is unramified at a place v if the action of the inertia group Iv̄
is trivial, where v̄ is any extension to K of the valuation v.

Compared to the case of K3 surfaces, a new feature of higher-dimensional hyper-Kähler va-
rieties that causes substantial difficulties is the existence of non-isomorphic birational transfor-
mations among them. Birational isomorphisms between hyper-Kähler varieties are isomorphisms
in codimension one and hence preserve (see Proposition 3.3) the cohomological Shafarevich con-
dition in (1.2) on the unramifiedness of the second cohomology. In particular, ShafhomM (K,S)
contains the entire K-birational class of any of its members. This motivates us to consider the
so-called Shafarevich set with essentially good reduction, denoted by ShafessM (K,S); see Definition
3.4 for the precise definition. Roughly speaking, a hyper-Kähler variety X defined over K has
essentially good reduction at a place v if, after a finite extension K ′/K that is unramified at v,
we have a K ′-birational model of XK′ that has good reduction.
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The above three Shafarevich sets are related as follows:

ShafM (K,S) ⊂ ShafessM (K,S) ⊂ ShafhomM (K,S). (1.3)

The first main result of the paper is the following, which gives a positive answer to Conjecture
1.3 for all hyper-Kähler varieties, upon fixing the deformation type. The statement is in a more
general setting: we allow finitely generated field extension F of Q instead of just a number field
K, the role of the ring of S-integers in K is played by a finitely generated normal domain R with
fraction field F , and the good reduction condition is stipulated only for prime ideals of height 1.
See Section 3 for the precise definitions of various Shafarevich sets. In the general notation, the
previous ShafM (K,S) corresponds to ShafM (K,OK,S).
Theorem 1.4 (Unpolarized Shafarevich conjecture in a deformation class). Let R be a finitely
generated Z-algebra which is a normal integral domain with fraction field F . Let M be a defor-
mation type of hyper-Kähler varieties with b2 ̸= 3. Then there are only finitely many F -birational
isomorphism classes in ShafessM (F,R).
If b2 ⩾ 5, then ShafessM (F,R), and hence ShafM (F,R), is a finite set.

The finiteness of deformation classes of hyper-Kähler manifolds in a given dimension is un-
known. Nevertheless, Huybrechts [29] proved such a finiteness result upon fixing the Beauville–
Bogomolov form. This has been strengthened by Kamenova [40] in the following form:

Theorem 1.5 (Huybrechts, Kamenova). There are only finitely many deformation classes of com-
plex hyper-Kähler manifolds, with given Fujiki constant and given discriminant of the Beauville–
Bogomolov form.

The definitions of the Fujiki constant and the discriminant, which are natural deformation
invariants for hyper-Kähler varieties, are recalled in Section 2. Combining Theorem 1.5 with
Theorem 1.4, we obtain the following result in the direction of Conjecture 1.3:

Theorem 1.6. Let K be a number field and S a finite set of places of K. For any n,∆ ∈ N
and c ∈ Q, there are only finitely many K-isomorphism classes of 2n-dimensional hyper-Kähler
varieties defined over K, with Fujiki constant c, discriminant of Beauville–Bogomolov form ∆,
b2 ⩾ 5, and with good reduction outside S.

The gap between Theorem 1.6 and Conjecture 1.3 can be resolved if there are only finitely
many possibilities for Fujiki constants and discriminants of the Beauville–Bogomolov forms of
hyper-Kähler manifolds in a given dimension.

Another new feature of hyper-Kähler varieties in dimension > 2 is that the action of the
automorphism group on the second cohomology is not necessarily faithful (see Example 2.10),
which by twisting [13] leads to the failure of the naive version of the cohomological generalization
of the Shafarevich conjecture for (polarized or unpolarized) hyper-Kähler varieties in general, see
Section 8.1 for counter-examples. On the other hand, we have the following result, where (i) says
that passing to geometric isomorphism classes (hence ignoring the effect of twists) recovers the
finiteness, and (ii) says that the nonfaithfulness of the action of the automorphism group is the
“only” obstruction to finiteness.

Theorem 1.7 (Cohomological Shafarevich conjecture). Let R be a finitely generated Z-algebra
that is a normal integral domain with fraction field F . Let M be a deformation type of hyper-
Kähler varieties with b2 ̸= 3.
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(i) There are only finitely many geometrically birational isomorphism classes in ShafhomM (F,R).
If b2 ⩾ 5, then there are only finitely many geometric isomorphism classes in ShafhomM (F,R).

(ii) Suppose that for any hyper-Kähler variety in the deformation type M , the automorphism
group acts faithfully on the second cohomology. Then there are only finitely many F -
birational isomorphism classes in ShafhomM (F,R).
If b2 ⩾ 5, then ShafhomM (F,R) is a finite set.

In fact, to remedy the nonfaithfulness of the action of the automorphism group on the second
cohomology, we investigate in Section 8.2 a more general version of the cohomological Shafarevich
conjecture by taking into account of the unramifiedness of the cohomology groups of degree other
than 2, and Theorem 1.7 is proved in the general form of Theorem 8.3. As a consequence, we
deduce in Corollary 8.4 that the full-degree cohomological Shafarevich conjecture holds for all
hyper-Kähler varieties of known deformation type, and for all hyper-Kähler varieties of dimension
4.

1.3 Geometric finiteness of hyper-Kähler varieties of CM type

The key ingredient in the proof of Theorem 1.4 is the construction of a uniform Kuga–Satake
map ([66], [74], see Section 5.5) and its arithmetic properties, which allows us to show, as an
intermediate step towards Theorem 1.4, that there are only finitely many isometry classes of
(geometric) Picard lattices of hyper-Kähler varieties arising from ShafessM (F,R) (see Theorem
7.4).

More generally, we propose the following conjecture, inspired by yet another conjecture of
Shafarevich formulated in [73].

Conjecture 1.8 (Finiteness of geometric Picard lattices). Let d be an integer and M a defor-
mation type of hyper-Kähler manifolds. Then there are only finitely many isometry classes in
the following set of lattices:{

Pic(XC)

∣∣∣∣ X is hyper-Kähler over a number field K of degree ⩽ d
XC := X ×K Spec(C) is of deformation type M for some K ↪→ C

}
. (1.4)

Here the Picard group is equipped with the restriction of the Beauville–Bogomolov quadratic
form.

As a special case, if we fix the number field K in (1.4), the finiteness of isometry classes in
(1.4) can be regarded as a strengthening of the Bombieri–Lang conjecture for moduli spaces of
lattice-polarized hyper-Kähler varieties, which predicts that the K-rational points in a moduli
space F of lattice-polarized hyper-Kähler varieties are contained in the Noether–Lefschetz loci
if F is of “sufficiently” general type.

One could also speculate the more ambitious form without the restriction on deformation
type. In the case of K3 surfaces, Conjecture 1.8 has been confirmed for K3 surfaces of CM type
by Orr–Skorobogatov in [66, Corollary B.1]. In fact, they proved the following stronger result
[66, Theorem B]:

Theorem 1.9 (Orr–Skorobogatov). There are only finitely many geometric isomorphism classes
of K3 surfaces of CM type which can be defined over a number field of a given degree.

As another application of the uniform Kuga–Satake construction, our second main result
generalizes Theorem 1.9 to hyper-Kähler varieties of CM type.
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Theorem 1.10. Let d be a positive integer and M a fixed deformation type of hyper-Kähler
varieties with b2 ⩾ 4. Then there are only finitely many geometrically birational equivalence
classes of hyper-Kähler varieties of CM type and of deformation typeM which can be defined over
a number field of degree ⩽ d. When b2 ⩾ 5, there are only finitely many geometric isomorphism
classes of hyper-Kähler varieties of CM type and of deformation type M which can be defined
over a number field of degree ⩽ d.

Note that (geometrically) birational transformations preserve the (geometric) Picard lattice.
In particular, Conjecture 1.8 holds for hyper-Kähler varieties of CM type:

Corollary 1.11. Let d be a positive integer and M a fixed deformation type of hyper-Kähler
varieties with b2 ⩾ 4. There are only finitely many isometry classes of the geometric Picard
lattices of hyper-Kähler varieties of CM type and of deformation type M which can be defined
over a number field of degree ⩽ d.

As a consequence, we get the uniform boundedness of Brauer groups for hyper-Kähler varieties
of CM type.

Corollary 1.12. Fix a deformation type M of hyper-Kähler varieties with b2 ⩾ 4. For any
positive integer d, there exists a constant N such that

|Br(X)/Br0(X)| < N and |Br(XQ̄)
Gal(Q̄/F )| < N

for any hyper-Kähler variety X of CM type, of deformation type M , and defined over a number
field F of degree at most d. Here Br0(X) := Im (Br(F )→ Br(X)).

Structure of the paper. In Section 2, we recall some basic notions on hyper-Kähler vari-
eties over a field of characteristic zero, including the (Ẑ-)Beauville–Bogomolov form, deforma-
tion types, polarization in families, (birational) automorphisms, wall divisors, (birational) ample
cones, etc. In Section 3, we introduce various Shafarevich conditions and the corresponding
Shafarevich sets. In Section 4, we define the moduli stacks/spaces of (oriented) polarized hyper-
Kähler varieties (with level structures). In Section 5, we first follow Bindt [9] to study the period
map from the moduli spaces of hyper-Kähler varieties to Shimura varieties of orthogonal type,
and then develop a uniform Kuga–Satake construction generalizing She [74]. In Section 6, we
show the finiteness of twists with smooth reductions. In Section 7, we prove the unpolarized
Shafarevich conjecture (Theorem 1.4). In Section 8, we establish a cohomological version of the
unpolarized Shafarevich conjecture (Theorem 1.7). In Section 9, we show the finiteness of CM
type hyper-Kähler varieties (Theorem 1.10) and deduce Corollary 1.12. In Appendix A, we pro-
vide a generalization to the setting of algebraic spaces of Matsusaka–Mumford’s theorem on
specializations of birational maps.

2. Generalities on hyper-Kähler varieties

Hyper-Kähler varieties are higher-dimensional analogues of K3 surfaces. They play a significant
role in algebraic geometry since they form one type of building blocks of varieties with vanishing
first Chern class, by the Beauville–Bogomolov decomposition theorem ([7, 10]). In this section,
we collect some generalities on these varieties. See [7, 28, 25] for basic results and examples over
the field of complex numbers.

Firstly, we fix the definition: a hyper-Kähler (or irreducible symplectic) variety over a field
k of characteristic 0 is a geometrically connected smooth projective k-variety X such that it
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is geometrically simply connected πét1 (Xk̄) = 1, and H0(X,Ω2
X/k) is spanned by a nowhere de-

generate algebraic 2-form. Note that the 2-form is automatically closed (hence symplectic) by
the degeneration of the Hodge-de Rham spectral sequence. Moreover, πét1 (Xk̄) = 1 implies that
H1

ét(Xk̄,Zℓ) = 0 by étale Hurewicz theorem. Using Beauville–Bogomolov decomposition theorem,
it is easy to see that X is hyper-Kähler if and only if X ×k SpecC is a complex hyper-Kähler
manifold in the sense of [7, 28], for any embedding k ↪→ C; see [9, Lemma 3.1.3].

2.1 Beauville–Bogomolov form

For a complex hyper-Kähler variety X, H2(X,Z) carries an integral, primitive quadratic form
qX , called the Beauville–Bogomolov (BB) form which satisfies the following conditions:

(i) qX is non-degenerate and of signature (3, b2(X)− 3).

(ii) There exists a positive rational number cX , called the Fujiki constant, such that qnX(α) =
cX
∫
X α

2n for all classes α ∈ H2(X,Z), where 2n = dim(X).

(iii) The Hodge decomposition H2(X,C) = H2,0(X) ⊕ H1,1(X) ⊕ H0,2(X) is orthogonal with
respect to qX ⊗ C.

Remark 2.1. All known examples of complex hyper-Kähler manifolds have an even BB form,
that is, ΛM is an even lattice. The evenness of ΛM in general is unknown. Let us mention that
there are examples of hyper-Kähler orbifolds with odd BB form [41].

By Bogomolov–Tian–Todorov [11], the deformation space ofX is unobstructed and its smooth
deformations remain hyper-Kähler. The property (2) ensures the deformation invariance of the
Fujiki constant cX and the lattice ΛX := (H2(X,Z), qX). From now on, we assume that k is
finitely generated.

For a hyper-Kähler variety X defined over a field k of characteristic zero, upon fixing an
embedding ι : k ↪→ C, Artin’s comparison isomorphism

H2(X ×k,ι SpecC,Z(1))⊗ Ẑ ∼= H2
ét(Xk̄, Ẑ(1)) (2.1)

allows us to transport the BB form qX on H2(X ×ι SpecC,Z(1)) to a Ẑ-quadratic form:

q : H2
ét(Xk̄, Ẑ(1))×H2

ét(Xk̄, Ẑ(1))→ Ẑ,

where k̄ denotes the algebraic closure of k in C. As shown in [9, Lemma 4.2.1], this Ẑ-quadratic
form is independent of the choice of embedding, which is called the Ẑ-BB form ofX. Similarly, the
Fujiki constant cX is defined to be the Fujiki constant of X ×ι SpecC, which is also independent
of ι.

2.2 Deformation type and Ẑ-numerical type

Definition 2.2 (Deformation type). LetM be a fixed complex hyper-Kähler manifold. Given an
embedding ι : k ↪→ C, we say that a hyper-Kähler variety X over k is of (complex) deformation
type M with respect to ι if the complex variety XC := X×ι Spec(C) is deformation equivalent to
M . We say that a hyper-Kähler variety X is of deformation typeM if it is so for some embedding
k ↪→ C.

So far, only a few deformation types have been discovered: in each even dimension 2n, there
are the K3[n]-type and the generalized Kummer type Kumn constructed by Beauville [7], and
O’Grady constructed in [64] and [63] two other sporadic examples in dimension 6 and 10, called
OG6-type and OG10-type respectively. Clearly, a hyper-Kähler variety can have at most finitely
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many deformation types. It is an interesting open question whether the deformation type is
actually independent of the embedding ι : k ↪→ C. For hyper-Kähler varieties of known types,
one can obtain the following result.

Proposition 2.3. Let k be a field of characteristic 0. If there exists ι0 : k ↪→ C such that
X ×ι0 Spec(C) is one of the four known deformation types, then X ×ι Spec(C) is of the same
deformation type for any embedding ι : k ↪→ C.

Proof. This was proved in [84, Proposition 2.3.1] for X ×ι Spec(C) of the K3[n] type, and the
argument is similar for other known deformation types. Let us sketch the proof for the convenience
of the reader. We write XC = X ×ι0 Spec(C). By the Lefschetz principle, one can assume that k
is finitely generated over Q.

By Mongardi and Pacienza [59, Corollary 1.2 & Example 3.18], XC is deformation equivalent
via a chain of projective families to Y , a crepant resolution of the albanese fiber of the moduli
space of semistable vector bundles on some smooth K3 or abelian surface S with Mukai vector
of the form (1, 0, n) or (2, 0,−2), with respect to some suitable generic polarization.

For any embedding ι : k ↪→ C, the isomorphism ι(k) ∼= ι0(k) can be extended to an element in
Aut(C), which we still denote by ι. By conjugating the chain of projective deformations between
X and Y , we see that X ×ι Spec(C) is of the same deformation type as Y ×ι Spec(C).

The conjugate surface Sι = S ×ι Spec(C) remains a K3 or abelian surface. The conjugate
Y ×ι Spec(C) is then birational to a crepant resolution of the albanese fiber of the moduli space
of semistable vector bundles on Sι with the same Mukai vector, with respect to some suitable
generic polarization.

Thanks to Huybrechts’ result [28, Theorem 4.6], the geometric deformation type is invariant
under birational transformations between hyper-Kähler varieties. Therefore the deformation type
of X ×ι Spec(C) is the same as that of XC.

If X is of deformation type M , denoting ΛM the lattice realized by the BB form on H2(M,Z)
and cM its Fujiki constant, then as we mentioned above in Section 2.1, ΛM ⊗ Ẑ is the Ẑ-BB form
of X, and cM is the Fujiki constant of X, regardless of the embedding ι.

In [24], the authors consider the moduli problem of polarized hyper-Kähler manifolds of fixed
numerical type. This motivates us to introduce the following weaker notion of Ẑ-numerical type
of hyper-Kähler varieties over general fields, which is more appropriate for our analysis when
addressing moduli spaces and period maps.

Definition 2.4 (Ẑ-numerical type). We fix a positive integer n. Let k, k′ be fields of characteristic
0, and X (resp.X ′) a 2n-dimensional hyper-Kähler variety over k (resp. k′). We say that X and
X ′ are Ẑ-numerically equivalent if there exists an isomorphism of Ẑ-modules

g : H2
ét(Xk, Ẑ) ≃ H2

ét(X
′
k′
, Ẑ)

such that g is isometric with respect to the Ẑ-BB forms, and X and X ′ have the same Fujiki
constant.

Remark 2.5. A Ẑ-numerical type is the union of finitely many deformation types. Indeed, if X
and Y are of the same deformation type (i.e. XC and YC are deformation equivalent), then by the
definitions of Ẑ-BB form and Fujiki constant, X and Y clearly have the same Ẑ-numerical type.
Conversely, since there are only finitely many possible isometry classes of Z-lattices of bounded
rank and discriminant, fixing a Ẑ-numerical type N leaves only finitely many possibilities for the
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BB lattice of XC for any X of Ẑ-numerical type N . By Huybrechts [29, Theorem 4.3], there are
only finitely many possibilities for the deformation types.

2.3 Polarization and Picard lattice

A family of (projective) hyper-Kähler varieties over a Q-scheme T means a proper smooth mor-
phism of algebraic spaces X → T such that every geometric fiber is a projective hyper-Kähler
variety.

Given such a family of projective hyper-Kähler varieties

f : X→ T,

the relative Picard functor PicX/T is represented by a separated algebraic space over T , denoted
by the same notation. In particular, if X is a hyper-Kähler variety over a field k of characteristic
zero, then the relative Picard functor PicX/k is represented by a separated, smooth, 0-dimensional
scheme over k (cf. [14, § 8.4, Theorem 1]).

Let Gk := Gal(k̄/k) be the absolute Galois group of k. Then the group PicX/k(k) is identified

with the subgroup PicX/k(k̄)
Gk ⊂ PicX/k(k̄) = Pic(Xk̄), and hence is torsion-free (since Pic(Xk̄)

is so). Denote PicX/k(k) by PicX in the sequel.

Definition 2.6 ([5, 69]). Let X→ T be a family of hyper-Kähler varieties over a Q-scheme T .
A polarization on X/T is a global section H ∈ PicX/T (T ), such that for every geometric point t
of T , the fiber Ht ∈ PicXt is an ample line bundle on Xt.

Let X be a hyper-Kähler variety over a field k of characteristic zero. For each prime ℓ, the
ℓ-adic cycle class map defines an embedding

cℓ1 : Pic(X)⊗ Zℓ → H2
ét(Xk̄,Zℓ(1)),

which factors through the geometric first Chern class map

Pic(Xk̄)⊗ Ẑ→ H2
ét(Xk̄, Ẑ(1)). (2.2)

Putting all prime ℓ together, we get

c1 : Pic(X)⊗ Ẑ→ H2
ét(Xk̄, Ẑ(1)), (2.3)

Since the image of cℓ1 is Gk-invariant for any prime ℓ, the morphism (2.3) is extended to a
homomorphism (keeping the same notation):

c1 : PicX ⊗Z Ẑ ↪→ H2
ét(Xk̄, Ẑ(1)), (2.4)

whose image lies in the Gk-invariant part.

Proposition 2.7. Let X be a hyper-Kähler variety over a number field k with b2 > 3. Then the
first Chern class map (2.4) induces an isomorphism:

c1 : PicX ⊗ Ẑ ∼−→ H2
ét(Xk̄, Ẑ(1))

Gk .

Proof. When b2(X) > 3, the Tate conjecture for divisors on polarized hyper-Kähler varieties over
number fields holds true, i.e., for each prime ℓ, the first Chern class map induces an isomorphism
of Qℓ-vector spaces

cℓ1 ⊗Qℓ : PicX ⊗Qℓ
∼−→ H2

ét(Xk̄,Qℓ)
Gk .

See [5, Theorem 1.6.1 (2)]. Therefore rk(PicX ⊗Z Ẑ) = rk
(
H2

ét(Xk̄, Ẑ(1))Gk

)
. To conclude, it

suffices to show that PicX ⊗Z Ẑ is saturated in H2
ét(Xk̄, Ẑ(1)) via c1.

9
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To this end, by the exponential sequence, the cokernel of the (complex) first Chern class map

cC1 : Pic(Xk̄)
∼= Pic(XC) ↪→ H2(X(C),Z) (2.5)

lies in H2(XC,OXC), which is torsion-free. Thus Pic(Xk̄) ⊆ H2(X(C),Z) is saturated. The com-

plex and the Ẑ-first Chern class maps (2.2) and (2.5) are compatible in the sense that the
comparison isomorphism H2(X(C),Z)⊗ Ẑ ∼= H2

ét(Xk̄, Ẑ) identifies the Ẑ-sublattices

cℓ1(Pic(Xk̄)⊗ Ẑ) = c1(Pic(Xk̄))⊗ Ẑ. (2.6)

Therefore, the sub-lattice Pic(Xk̄) ⊗ Ẑ ⊆ H2
ét(Xk̄, Ẑ(1)) is saturated. Since PicX ⊆ Pic(Xk̄) is

also saturated by definition, PicX ⊗ Ẑ ⊆ H2
ét(Xk̄, Ẑ(1)) is saturated.

2.4 Automorphisms and birational self-maps

Let X be a hyper-Kähler variety over a finitely generated field k of characteristic zero. For any
field extension k′/k, denote by Aut(Xk′) the group of k′-automorphisms of Xk′ and Bir(Xk′) the
group of k′-birational self-maps. The group Aut(Xk′) is discrete. For an embedding k ↪→ C, the
action of Aut(XC) on the second cohomology preserves the Beauville–Bogomolov form. Define

Aut0(XC) := ker
(
Aut(XC)→ O(H2(XC,Z))

)
; (2.7)

and its subgroup of automorphisms acting trivially on the whole cohomology:

Aut00(XC) := ker (Aut(XC)→ GL(H∗(XC,Q))) . (2.8)

Theorem 2.8 (Huybrechts [28, Proposition 9.1], Hassett–Tschinkel [27, Theorem 2.1]). The
group Aut0(XC) is a finite group and it is deformation invariant for hyper-Kähler manifolds.

Similarly, we have the following result concerning Aut00.

Proposition 2.9. The group Aut00(XC) is invariant under deformation for hyper-Kähler man-
ifolds.

Proof. We are in the complex setting and drop the subscript C here. The first step is similar
to Hassett–Tschinkel [27, Theorem 2.1]: given a complex hyper-Kähler manifold X, the group
Aut00(X) acts equivariantly on the universal deformation over the Kuranishi space X→ Def(X).
Since the action on

H1(X,TX) ≃ H1(X,Ω1
X) ⊂ H2(X,C)

is the identity, the action is the identity on Def(X), i.e. it is a fiberwise action. This shows that for
any family of hyper-Kähler manifolds X→ B, the group scheme map π : Aut00(X/B)→ B is a
local homeomorphism. We are reduced to showing the universal closedness of π for a family X/B;
in other words, given a family of (fiberwise) automorphisms ϕ ∈ Aut0(X/B), if ϕt ∈ Aut00(Xt)
for all t ̸= 0, then the specialization ϕ0 ∈ Aut0(X0) also acts trivially on the whole cohomology
ring. To this end, note that the specialization (as cycles) of the graph Γϕt is the graph Γϕ0 , and
[Γϕt ] = [∆Xt ] for all t ̸= 0, we have that [Γϕ0 ] = [∆X0 ], i.e. ϕ0 acts trivially on H∗(X0,Q).

Example 2.10. The group Aut0(XC) for a complex hyper-Kähler variety XC of known deforma-
tion types has been worked out, and Aut00(XC) is shown to be trivial for all known deformation
types and also in general in dimension 4.

(i) K3[n]-type: Aut0 is trivial by Beauville [6, Proposition 10].

10



Unpolarized Shafarevich conjectures for hyper-Kähler varieties

(ii) Generalized Kummer type Kumn:

Aut0 ∼= (Z/(n+ 1)Z)4 ⋊ Z/2Z,

by Boissière, Nieper-Wisskirchen, and Sarti [12, Corollary 5]. Oguiso proved in [65, Theorem
1.3] that Aut00 vanishes.

(iii) OG6-type: Mongardi and Wandel proved that Aut0 ∼= (Z/2Z)8 in [60, Theorem 5.2], and
that Aut00 vanishes in [60, Remark 6.9]. Note that they showed the vanishing of Aut00 for
crepant resolutions of the projective OG6 singular moduli spaces. Then by Proposition 2.9,
we can conclude the vanishing for all OG6-type manifolds; cf. [65, Section 4].

(iv) OG10-type: Aut0 is trivial by Mongardi and Wandel [60, Theorem 3.1].

(v) Dimension 4: Aut00 is trivial by Jiang and Liu [39].

Moreover, we can consider the automorphism group of polarized hyper-Kähler varieties. For
a polarized pair (X, ξ), we define

Aut (Xk′ , ξk′) := {f ∈ Aut(Xk′) | f∗ξ = ξ},

which is finite by the Matsusaka–Mumford theorem (see [56, § 1, Corollary 2]). Similarly, one
could also consider the group Bir(Xk′ , ξk′) of k

′-birational self maps of (Xk′ , ξk′). It is well-known
that between two smooth projective varieties with trivial canonical bundles, any birational map
that preserves an ample class is an isomorphism, i.e., Bir(Xk′ , ξk′) = Aut(Xk′ , ξk′) (see [23,
Corollary 3.3, Lemma 3.4] for the geometric case).

2.5 Cone conjecture and finiteness of birational models

Let X be a hyper-Kähler variety over k of a given deformation type. Let N1(X) = Pic(X) be the
Néron–Severi lattice ofX, equipped with the Beauville–Bogomolov form. Inside the Néron–Severi
space

N1(X)R = N1(X)⊗ R,
we have the positive cone Pos(X) defined as the connected component of {v ∈ N1(X)R | v2 > 0}
containing the ample classes, and the nef cone Nef(X) defined as the closure of the ample cone
Amp(X). The birational ample cone, denoted by BA(X), is defined as the union⋃

f

f∗Amp(Y ),

where f runs through all k-birational isomorphisms from X to other hyper-Kähler varieties over
k. It is known that the closure of BA(X) is the movable cone Mov(X) (see [27, 80]).

Definition 2.11 ([2], [58]). Let D be a divisor class on a hyper-Kähler variety XC. Then D is
called a wall divisor or a monodromy birationally minimal (MBM) class if q(D) < 0 and

Φ(D⊥) ∩ BA(XC) = ∅,

for any Hodge monodromy operator Φ. We denote the set of wall divisors on XC by W(XC).

In [3], Verbitsky and Amerik proved the following boundedness results on wall divisor classes
and confirmed the Kawamata–Morrison cone conjecture for hyper-Kähler varieties (see also [4]).

Theorem 2.12 ([3, Theorem 1.5, Theorem 1.7]). Let X be a smooth hyper-Kähler variety with
b2 ⩾ 5 over a field k of characteristic zero. Then the Beauville–Bogomolov squares of the elements
in W(XC) are bounded (from below).

11
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Using Markman and Yoshioka’s argument in [53, Corollary 2.5] and the movable cone conjec-
ture for complex hyper-Kähler varieties (proved by Markman [52]), the boundedness of squares
of wall divisors above allow Amerik and Verbitsky to conclude the finiteness of the set of bira-
tional hyper-Kähler models of a given hyper-Kähler variety over the complex numbers. Over an
arbitrary field of characteristic zero, using the method of Bright–Logan–van Luijk [15] for K3
surfaces, the third author [80, Theorem 4.2.7] generalized Markman’s work [52] and deduced in
the similar way the finiteness of birational hyper-Kähler models:

Theorem 2.13 (Finiteness of birational models). Let k be a field of characteristic zero. Let
X be a hyper-Kähler variety defined over k with b2 ⩾ 5. Then there are only finitely many
k-isomorphism classes of hyper-Kähler varieties defined over k which are k-birational to X.

3. Various Shafarevich sets of hyper-Kähler varieties

In this section, we first define in a more general setting of the Shafarevich sets (1.1), (1.2)
mentioned in the introduction, and then introduce the notion of essentially good reduction and
the corresponding Shafarevich set. Throughout the section, let R be a finitely generated Z-algebra
which is a normal integral domain with fraction field F . Fix positive integers n and d. Let M
be a Ẑ-numerical type or a deformation type of 2n-dimensional hyper-Kähler varieties (Section
2.2); these two choices do not make much difference thanks to Remark 2.5, and we will make use
of both.

3.1 Polarized and unpolarized Shafarevich sets and their cohomological versions

The Shafarevich set (1.1) is generalized as follows:

Definition 3.1 (Polarized and unpolarized Shafarevich sets). Let M be a deformation type of
hyper-Kähler variety.

ShafM (F,R) =

X
∣∣∣∣∣∣
X is a hyper-Kähler variety of typeM over F ,
for any height 1 prime ideal p ∈ SpecR, X has
good reduction at p

/ ∼=F . (3.1)

Furthermore, let d be a positive integer.

ShafM,d(F,R) =

(X, ξ)

∣∣∣∣∣∣∣∣
(X, ξ) is a polarized hyper-Kähler vari-
ety of type M over F with (ξ)2n = d,
for any height 1 prime ideal p ∈ SpecR,
X has good reduction at p

/ ∼=F .

Here, X has good reduction at p means that there is a regular algebraic space X which admits
a smooth and proper morphism to the spectrum of the local ring Rp such that XF ∼= X as
F -schemes.

Following [77], we define the following cohomological (polarized) Shafarevich sets.

Definition 3.2 (Cohomological Shafarevich sets). LetM be a deformation type of hyper-Kähler
variety.

ShafhomM (F,R) =

X
∣∣∣∣∣∣∣∣
X is a hyper-Kähler variety of typeM over F ,
for any height 1 prime ideal p ∈ SpecR,
H2

ét(XF̄ ,Qℓ) is unramified at p for some ℓ ̸=
char(k(p))

/ ∼=F . (3.2)

12
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Furthermore, let d be a positive integer.

ShafhomM,d(F,R) =

(X, ξ)

∣∣∣∣∣∣∣∣∣∣
(X, ξ) is a polarized hyper-Kähler variety
of degree d of type M over F ,
and for any height 1 prime ideal p ∈
SpecR, H2

ét(XF̄ ,Qℓ) is unramified at p for
some ℓ ̸= char(k(p))

/
∼=F . (3.3)

Here, H2
ét(XF̄ ,Qℓ) is unramified at p if the inertia group Ik(p) acts trivially on it. For n = 1

(K3 surfaces), the unramifiedness conditions in (3.2) and (3.3) are independent of the choice
of ℓ ̸= char(R/p), see [77, Section 5]. Unfortunately, we do not know the ℓ-independence of
unramifiedness in higher dimensions. Therefore, we also consider the following slightly more
restrictive version of (3.2) and (3.3): for a prime number ℓ ∈ R×:

Shafhomℓ
M (F,R) =

X
∣∣∣∣∣∣
X is a hyper-Kähler variety of typeM over F ,
and for any height 1 prime ideal p ∈ SpecR,
H2

ét(XF̄ ,Qℓ) is unramified at p

/ ∼=F ; (3.4)

Shafhomℓ
M,d (F,R) =

(X, ξ)

∣∣∣∣∣∣∣∣
(X, ξ) is a polarized hyper-Kähler variety
of type M over F with (ξ)2n = d,
and for any height 1 prime ideal p ∈
SpecR, H2

ét(XF̄ ,Qℓ) is unramified at p.

/ ∼=F . (3.5)

Note that the unpolarized Shafarevich sets ShafM (F,R) admits a natural map from the union
of polarized Shafarevich sets by forgetting the polarization:∐

d∈Z>0

ShafM,d(F,R)↠ ShafM (F,R) (3.6)

which is surjective. Similarly for the cohomological Shafarevich sets Shafhom and Shafhomℓ .

By the smooth and proper base change theorems (see [1, Théorème XII.5.1] and [75, Theorem
0DG2]), having good reduction implies the unramifiedness. Therefore,

ShafM (F,R) ⊂ Shafhomℓ
M (F,R) ⊂ ShafhomM (F,R);

ShafM,d(F,R) ⊂ Shafhomℓ
M,d (F,R) ⊂ ShafhomM,d (F,R).

The difference between ShafM (F,R) and ShafhomM (F,R) is partially explained by the following
observation:

Proposition 3.3. Let X and Y be hyper-Kähler varieties over F . Suppose that X and Y are
birationally equivalent over F . Then X ∈ ShafhomM (F,R) if and only if Y ∈ ShafhomM (F,R).

Proof. For any height 1 prime ideal p of R, let Fp be the completion of F at p. The birational
isomorphism between X and Y is an isomorphism in codimension 1, hence we have an isomor-
phism

H2
ét(XF̄p

,Qℓ(1)) ∼= H2
ét(YF̄p

,Qℓ(1))

as Gal(F̄p/Fp)-modules for all ℓ and p. It follows that H2
ét(XF̄p

,Qℓ) is unramified at p if and only

if H2
ét(YF̄p

,Qℓ) is unramified at p.
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In other words, the unramifiedness condition cannot distinguish birationally equivalent ob-
jects in ShafhomM (F,R). This suggests our approach towards the Shafarevich conjecture: we have
the finiteness of isomorphism classes within a birational equivalence class (this is guaranteed by
[80], recalled above as Theorem 2.13); on the other hand, we study the finiteness of birational
equivalence classes in various Shafarevich sets, which is the main goal of the paper, accomplished
in Section 7).

3.2 Shafarevich sets of hyper-Kähler varieties with essentially good reduction

To take into account the birational transformations, we introduce the following notion of essen-
tially good reduction of hyper-Kähler varieties, which roughly means having good reduction after
birational modification over an unramified base change.

Definition 3.4 (Essentially good reduction). Let X be a hyper-Kähler variety over F . Let p be
a height 1 prime ideal of R. We say X has essentially good reduction at p if there exists a finite
étale extension S of the completion R̂p with respect to the maximal ideal, such that there exists
a smooth proper algebraic space Y over S whose generic fiber YFrac(S) is a hyper-Kähler variety
that is Frac(S)-birationally isomorphic to XFrac(S).

Remark 3.5. The requirement on base change is meaningful: already in dimension 2, there are
examples of K3 surfaces over Qp which does not admit good reduction but admits good reduction
after a finite unramified extension of Qp (see [49, Theorem 1.6]).

Definition 3.6 (Essential Shafarevich sets). Keep the notation as above.

ShafessM (F,R) =

X
∣∣∣∣∣∣
X is a hyper-Kähler variety of typeM over F ,
for any height 1 prime ideal p ∈ SpecR, X has
essentially good reduction at p

/ ∼=F (3.7)

ShafessM,d(F,R) =

(X, ξ)

∣∣∣∣∣∣∣∣
(X, ξ) is a polarized hyper-Kähler variety of
type M over F , with (ξ)2n = d
for any height 1 prime ideal p ∈ SpecR, X
has essentially good reduction at p

/ ∼=F (3.8)

By definition, we have

ShafM (F,R) ⊂ ShafessM (F,R) ⊂ Shafhomℓ
M (F,R) ⊂ ShafhomM (F,R), (3.9)

and similarly for polarized Shafarevich sets. The difference between the middle two sets is par-
tially explained in Section 8.

4. Moduli of polarized hyper-Kähler varieties

In this section, we review the moduli theory of polarized hyper-Kähler varieties. A good reference
is Bindt’s PhD thesis [9].

4.1 Moduli stacks of polarized hyper-Kähler varieties

Given positive integers n and d, consider the groupoid fibration Fd → (Sch/Q) of 2n-dimensional
polarized hyper-Kähler varieties of degree d. Let us write it in the form of a moduli functor

Fd : (Sch/Q)op → Groupoids

14
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defined as follows: for any Q-scheme T ,

Fd(T ) =

{
(f : X→ T, ξ)

∣∣∣∣∣ X→ T is a family of 2n-dimensional hyper-Kähler varieties,
ξ ∈ PicX/T (T ) is a polarization with (ξ2nt ) = d for all t ∈ T (k̄)

}
(4.1)

(see Section 2.3 for the notion of polarization), and for any morphism T1 → T2 of Q-schemes,
the functor Fd(T2) → Fd(T1) is given by pulling back families. Here, an isomorphism between
(X1 → T, ξ1) and (X2 → T, ξ2) in the groupoid Fd(T ) is a Cartesian diagram

X1 X2

T T

ψ
∼

∼

together with an isomorphism ψ∗(ξ2)
∼−→ ξ1 in the groupoid PicX1/T (T ).

Proposition 4.1 (Bindt). The moduli functor Fd is represented by a separated smooth Deligne–
Mumford stack of finite type over Q, still denoted by Fd.

Proof. [9, Theorem 3.3.2, Lemma 3.3.9] shows that Fd is a separated smooth Deligne–Mumford
stack locally of finite type over Q. To show that it is of finite type, applying Kollár–Matsusaka
[46], since (ξ2n) = d is fixed, there are only finitely many possibilities for the Hilbert polynomial.
Hence Fd is of finite type.

We shall introduce the moduli stack F̃d of oriented polarized hyper-Kähler spaces of degree
d, as a finite covering of Fd.

Definition 4.2 (Orientation). Let T be a Q-scheme, and let f : X → T be a family of hyper-
Kähler varieties with b2 > 3 (Section 2.3). An orientation on X/T is an isomorphism of sheaves
over Sét:

ω : Z/4Z ≃−→ detR2
étf∗µ4. (4.2)

This pair (X/S, ω) is called a family of oriented hyper-Kähler varieties over T .

The following observation in [9, Lemma 4.3.2] shows that the “orientation” defined here is
equivalent to that in Taelman [76], at least over a normal base.

Lemma 4.3. Let S be a normal scheme of finite type over Q. For any family of oriented hyper-
Kähler varieties (f : X→ S, ω) there are unique isomorphisms of lisse Ẑ-local systems

ωét : Ẑ
∼−→ detR2

étf∗Ẑ(1)

on S and

ωan : Z
∼−→ detR2

anf∗Z(1)
on SC, whose reductions on Z/4Z is ω and ωét|SC = ωan ⊗ Ẑ.

We denote by F̃d the moduli stack of oriented polarized hyper-Kähler varieties of degree d.
The natural forgetful functor F̃d → Fd is a finite étale covering by Lemma 4.3, which is of
degree two. Thus, the stack F̃d is a smooth Deligne–Mumford stack of finite type over Q, by
Proposition 4.1.

Remark 4.4. For K3 surfaces, the moduli stack Fd can be defined over Z and is smooth over
Z[ 1

2d ]. It is natural to ask whether the same assertion holds for higher dimensional hyper-Kähler
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varieties. This is known to be true for some families, such as the Fano varieties of lines on cubic
fourfolds [5]. However, this is a rather difficult problem in general, since the deformation theory
and even the “right” definition of hyper-Kähler varieties over mixed characteristic fields are
unclear at present. See [84] for the discussion on those of K3[n]-type.

Different from the case of K3 surfaces, the moduli stack Fd is not necessarily (geometrically)
connected. In practice, as there are only finitely many connected components, we may work with
a connected component of the moduli stack Fd or F̃d each time.

Remark 4.5. It is also natural to consider the moduli stack of polarized hyper-Kähler varieties of
degree d of a given deformation type, which is a union of some geometric connected components
of Fd. However, we do not know whether such stack is defined over Q, as it is unclear to us
whether the hyper-Kähler varieties in a connected component of Fd are deformation equivalent.
Instead, one can consider the moduli stack FM,d of polarized hyper-Kähler varieties of a given

Ẑ numerical type M (Section 2.2), this will be a substack of Fd defined over Q as M is stable
under the Gal(Q/Q)-action. In this way, we can view ShafM,d(F,R) as a subset of isomorphism
classes in FM,d(F ).

4.2 Level structures

Let F †
d be a connected component of Fd. Choose a point (X0, ξ0) ∈ F †

d (C). Let Λ be the BB
lattice of X0. Let Λh be the orthogonal complement of h = c1(ξ0) in Λ. For any geometric point

(X, ξ) in F †
d (C), there is an isomorphism of Ẑ-lattices

ϕ : Λ⊗ Ẑ ∼−→ H2
ét(X, Ẑ)

such that ϕ(h) = c1(H) by the connectedness of F †
d (cf. [9, Lemma 4.5.1]).

We write G = SO(Λh,Q) and let K → G(Af ) be a continuous group homomorphism from a
profinite group, with compact open image and finite kernel. Following [69] or [8], we say that
K → G(Af ), or simply K, is admissible if the image of every element of K can be viewed as an

isometry of Λ⊗ Af fixing h and stabilizing Λh ⊗ Ẑ. Recall that there is an injection

Kh :=
{
g ∈ SO(Λ)(Ẑ) | g(h) = h

}
→ G(Af ). (4.3)

By definition, Kh is admissible, and K is admissible if and only if its image in G(Af ) lies in Kh.

Consider Jh, the sheafification of the presheaf of sets on (F̃ †
d )ét, with sections over a connected

Q-scheme T given by the πét1 (T, t̄)-invariant set

(f : X→ T, ξ;ω)⇝

α : Λ⊗ Ẑ ∼−→ H2
ét(Xt̄, Ẑ(1))

∣∣∣∣∣∣
α is an isometry

such that α(h) = c1(ξt̄)
and det(α) = ωét.


πét
1 (T,t̄)

(4.4)

Here c1 is the Ẑ-first Chern class maps (2.3).

By construction, any admissible subgroup K naturally acts on Jh(T ) (via the source of each
α). Denote K\Jh for the quotient of Jh by the left-action of K, which is well-defined in the

category of étale sheaves on (F̃d)
†
ét.

Definition 4.6. A K-level structure on a polarized family of hyper-Kähler varieties f : X→ T
is a section over T of the étale sheaf K\Jh.
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Let F̃d,K be the moduli stack of oriented polarized hyper-Kähler varieties of degree d with
a K-level structure. It can be viewed as a finite étale cover of the original moduli stack (cf. [50,
Proposition 3.11]), i.e.,

Proposition 4.7. The stack F̃ †
d,K is a smooth Deligne–Mumford stack and the forgetful map

πd,K : F̃ †
d,K → F̃ †

d

is finite and étale.

For any field F of characteristic zero, the objects in F̃ †
d,K(F ) are those (X,H, ω;α) such that

– (X,H, ω) is an oriented polarized family of hyper-Kähler varieties over F , and

– α is a K-level structure α : Λ⊗ Ẑ ∼−→ H2
ét(XF̄ , Ẑ(1)) satisfying

α(ρ)(Gal(F̄ /F )) ⊆ K,

where ρ : Gal(F̄ /F )→ Aut (H2
ét(X, Ẑ(1)) is the Galois representation, and α(ρ)(σ) = α−1 ◦

ρ(σ) ◦ α for any σ ∈ Gal(F̄ /F ).

In this paper, we mainly consider the following level structures on hyper-Kähler varieties.

Definition 4.8. Keep the notation as above.

(i) The full-level-m structure is defined by the admissible group

Kh,m :=
{
g ∈ SO(Λ)(Ẑ)

∣∣g(h) = h, g ≡ 1 mod m
}
→ G(Af ).

(ii) As in [70], we define the spin level structures as follows. Let Cl+(Λh) be the even Clifford
algebra of Λh,Q. Let

GSpin(Λh)(Ẑ) = GSpin(Λh)(Af ) ∩ Cl+(Λh ⊗ Ẑ),

and

Ksp
m =

{
g ∈ GSpin(Λh)(Ẑ)

∣∣g ≡ 1 mod m
}
.

Recall that one has an adjoint representation

ad: GSpin(Λh)→ G

defined by ad(x) = (v 7→ xvx−1). The spin level-m structure is the map

Ksp
m

ad−→ G(Af ).

We set Kad
m ⊆ G(Ẑ) to be the image Ksp

m under the adjoint representation: It is an open
compact subgroup of G(Af ).

For the following usage, we denote by Kad
L,m and Ksp

L,m the corresponding level structures for a
different lattice L.

It could happen that the action of the automorphism group of a hyper-Kähler variety is not
faithful on the second cohomology (see Example 2.10). Therefore, F̃d,K is not represented by a
scheme in this case, even when K is very small, but we have the following remedy.

Corollary 4.9. If the automorphism group of a very general member of hyper-Kähler varieties
parametrized by F̃d is trivial, then F̃ †

d,Kh,m
is represented by a Q-scheme for m ⩾ 3, still denoted

by F̃†
d,Kh,m

.
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Proof. It suffices to show that any geometric point (X, ξ, ω;α) in F̃ †
d,Kad

m
(C) has only trivial

automorphism. Under our assumption, this follows from the fact the automorphism group of X
acts faithfully on H2(X,Z(1)) and any finite order automorphism of the pair (P2(X,Z(1)), α) is
trivial for m ⩾ 3 (cf. [69, Lemma 1.5.12]).

5. Arithmetic period map and uniform Kuga–Satake

In this section, we recall the construction of the arithmetic period map for the moduli space F̃d

of polarized oriented hyper-Kähler varieties of degree d. Moreover, we will construct a Kuga–
Satake map which is independent of the degree of polarization, which will be called the uniform
Kuga–Satake map (see Section 5.5).

5.1 Orthogonal Shimura varieties

We firstly recall the notion of Shimura varieties attached to a lattice. Let L be the lattice over Z
of signature (2, n) with n ⩾ 1 and let G = SO(LQ) be the special orthogonal group scheme over
Q associated with LQ := L⊗Q.

Consider the pair (G,D), where D is the space of oriented negative definite planes in LR:

D = SO(2, n)/SO(2)× SO(n)

where SO(2, n) = SO(L)(R). To any admissible level structure K → G(Af ), one can associate a
Shimura stack ShK(G,D). It is a smooth Deligne–Mumford stack over the reflex field. When K is
neat, ShK(G,D) is moreover a smooth quasi-projective variety. The complex points of ShK(G,D)
can be identified with the double coset quotient stack:

ShK(G,D)(C) = G(Q)\D ×G(Af )/K. (5.1)

The pair (G,D) is called the Shimura datum of orthogonal type. It is well known that the reflex
field of the Shimura datum (G,D) is equal to Q (see [5, Appendix]).

Remark 5.1. In [76] and [9], the notation ShK [G,D] is used for Shimura stacks to distinguish
them from the classical Shimura varieties. For ease of notation, we will use the classical notation
to denote the Shimura stack.

For simplicity, we denote by KL the discriminant kernel of G(Af ), which is the largest

subgroup of G(Ẑ) that acts trivially on the discriminant of L. Its Zp-component is just the image
of GSpin(L)(Zp) for p ⩾ 3. In particular, we have

Kad
L,m ⊆ KL (5.2)

as a compact open subgroup for 2 ∤ m, where Kad
L,m is defined in Definition 4.8. We simply write

Sh(L) := ShKL
(G,D)

for the orthogonal Shimura stack with level KL, and

ShK(L) := ShK(G,D)

for any open compact subgroup K ⊂ KL. For any m ⩾ 3, the inclusion (5.2) induces a finite
cover

ShKad
L,m

(L)→ Sh(L)
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of degree [KL : Kad
L,m]. If L contains a hyperbolic lattice, the Shimura variety Sh(L)(C) = ΓL\D

is irreducible and ΓL is the largest subgroup of G(Z) that acts trivially on the discriminant
(cf. [50, (4.1)]).

Let L be the local system on Sh(L)(C) attached to the tautological representation L of O(L).
The non-degenerate symmetric bilinear form on L gives rise to an injective map of local systems

L→ L∨.

The finite local system L∨/L with its Q/Z-valued quadratic form is canonically isomorphic to
the locally constant sheaf disc(L) over Sh(L)(C).

The Shimura stack Sh(L) has the following modular description (cf. [57, § 3] or [9, Lemma
4.4.4]).

Proposition 5.2. The groupoid Sh(L)(S) is the solution of the moduli problem of classifying
tuples (H, q, ξ, ω, αKL

), where

– H is a variation of Z-Hodge structures over S whose fibers are Hodge lattices of K3-type
with signature (3,m);

– q : H ×H → Z is a bilinear form of variation of Hodge structures;

– ξ is a global section of H of type (0, 0) such that q(ξ, ξ) > 0;

– ω : Z→ det(H) is an isomorphism of local systems;

– αKL
is a KL-level structure on (H, q, ξ);

such that for any point s ∈ S there is a rational Hodge isometry βs : Hs⊗Q ∼−→ Λ⊗Q such that
βs(ξs) = h and preserving the determinant.

5.2 Integral model of Shimura varieties.

Keep the same notation as in the previous section. We recall some results on the existence of
integral canonical models of the orthogonal Shimura varieties Sh(L).

We refer to [51, Definition 4.2] for the definition of (smooth) integral canonical model. Among
the requirements of this definition, the most important one for our usage is the smooth extension
property. For the convenience of readers, we record it here.

Definition 5.3. A (pro)-scheme S over Z(p) is with (smooth) extension property if for any
regular and locally-healthy (formally smooth) scheme X over Z(p), any morphism XQ → S can
be extended to X → S .

Then we have the following result.

Theorem 5.4. Suppose the discriminant group disc(L ⊗ Z[ 1N ]) is cyclic. Then the Shimura
varieties Sh(L) admits a canonical regular integral models SL over Z[ 1

2N ]. Moreover, for any
neat K ⊂ KL such that the p-primary component Kp = KL,p for some p ∤ 2N , there is a finite
extension

SL,K → SL.

étale on Z(p).

Proof. For any p ∤ 2N , the Z(p)-lattice L⊗Z(p) is with cyclic discriminant group. Let Kp ⊂ G(Zp)
be the p-primary component of the decomposition KL = KpKp. Applying [51, Theorem 4.4], we
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will obtain an integral model SL,Kp = {SL,KKp}K⊂Kp over Z(p) as a pro-scheme with étale
connect morphisms

Sh(L)(p) := ShKp(G,D) = lim←−
K⊂Kp

ShKKp(G,D),

which is formally smooth and with smooth extension property. We can consider the union of
quotients

SL =
⋃
p/∈S

SL,Kp/K
p,

which is an integral canonical model of Sh(L) over Z[ 1
2N ] as required.

Given L of signature (2, n), suppose we can find a primitive embedding of Z-lattices

L ↪→ L0

such that L0 has signature (3, n). Let N0 be the product of all primes in |disc(L0)|. Then L0

is unimodular over Z[ 1
N0

] and the discrimiant group disc
(
L⊗ Z[ 1

N0
]
)
is cyclic. We deduce the

following consequence of Theorem 5.4.

Corollary 5.5. Let m ⩾ 3 be an integer. Let N be the product of all primes in 2m| disc(Λ)|.
Then ShKad

m
(Λh) admits a regular integral canonical model over Z[ 1

2N ] for all Λh.

Remark 5.6. The requirement for disc(L⊗Z[ 1N ]) being cyclic can be relaxed with some modifica-
tion of L. Actually we can take the regular integral model with parahoric levels given in [43, 67]
instead. This will allow us to consider the periods of lattice-polarized hyper-Kähler varieties.

5.3 Period map and its descent

Let F̃ †
d be a fixed connected component which contains a geometric point (X0, H0) as in Section

4.2. There is an isometry of Ẑ-lattices

ϕ : Λ⊗ Ẑ ∼−→ H2
ét(X, Ẑ)

such that ϕ(h) = ĉ1(H) for any (X,H) ∈ F̃ †
d (C). This Ẑ-isometry also induces an isomorphism

Λ∨
h/Λh

∼−→ disc(c1(ξ)
⊥).

With the modular description of the orthogonal Shimura stack given in Proposition 5.2, we
thus obtain a holomorphic map, called the period map:

Pd,K,C : F̃ †
d,K(C)→ ShK(Λh)(C),

which sends (X,H, ω, α) to
(
(P2

B(X,Z), F •
Hdg), qX , ω, c1(H), α

)
. The global Torelli theorem for

polarized hyper-Kähler varieties implies the following.

Theorem 5.7 ([83, Theorem 8.4]). The period map

Pd,K,C : F̃ †
d,K(C)→ ShK(Λh)(C) (5.3)

is étale.

Let F be a number field. Fix a complex embedding F ⊂ C. Let (X,H) be a polarized
hyper-Kähler variety over F . Let V be its deformation space. Consider its universal deformation
f : X → V .
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Proposition 5.8 ([18, Proposition 16]). There is a finite extension F ′ of F and a formally étale
morphism of F ′-schemes V → Sh(Λh)F ′ which factors through Pd,C after taking field extension
along F ′ ⊂ C.

Globally, we have the following result of Bindt.

Proposition 5.9 ([9, Theorem 4.5.2]). For any admissible level K ⊂ KΛh
, there is an étale

morphism over Q
Pd,K : F̃ †

d,K → ShK(Λh),

such that Pd,K ⊗ C = Pd,K,C. Moreover, we have a 2-Cartesian diagram

F̃ †
d,K ShK(Λh)

F̃ †
d ShKh

(SO(Λh), DΛh
).

Pd,K

πd,K

Pd

(5.4)

We sometimes write P for a period map in short.

Remark 5.10. By Theorem 5.4, there exists an integral model for ShK(Λh). However, it is not
clear if one can extend the period map Pd,K integrally as in the case of polarized K3 surfaces.

5.4 Kuga–Satake constructions in general

The Kuga–Satake map plays a central role in our approach. The classical Kuga–Satake construc-
tion for polarized hyper-Kähler varieties is recalled here. We will construct in the next section a
uniform Kuga–Satake map for all polarization types.

Given a lattice L of signature (2, n) for n ⩾ 1 and an element e ∈ Cl+(L) that is sent to −e
under the canonical involution of the Clifford algebra, the spin representation defines a morphism
of Shimura datum

spe : (GSpin(L), D̃L)→ (GSp(W ),Ω±)

where W = (Cl+(L), φe) and Ω± is the Siegel half space. This induces morphisms

ShK(GSpin(L), D̃L)

ShK′′(SO(L), DL) ShK′(GSp(W ),Ω±)

ad
spe (5.5)

between the canonical models of Shimura varieties, where spe(K) ⊆ K ′ and ad(K) ⊆ K ′′.

If we take the levels K and K ′′ to be the so-called spin levels as in Definition 4.8, then there
exists a (non-canonical) section

γC : ShK′′(SO(L), DL)(C)→ ShK(GSpin(L), D̃L)(C) (5.6)

of ad (cf. [70, § 5.5]). It has a descent over a number field E, denoted by γE . The field E only
depends on the group K. The composition

spe(C) ◦ γC : ShK(L)(C)→ ShK′(GSp(W ),Ω±)(C)

is called the Kuga–Satake map.

Geometrically, write WR = W ⊗R. Then WR is naturally a G-module (action by left multi-
plication), which gives rise to a polarizable Hodge structure of weight one on WZ. This defines

21



Lie Fu, Zhiyuan Li, Teppei Takamatsu and Haitao Zou

a complex abelian variety A(W ) of dimension 2N , called the Kuga–Satake variety attached to
(WZ, φ), by the condition that H1(A,Z) = WZ is a Hodge structure. André has shown that ψL
can be defined over some number field, and this construction is the main ingredient to prove the
polarized Shafarevich conjecture in [5].

If one takes L to be Λh, the composition

ψh : F̃ †
d,K → ShK(Λh)→ ShK′(GSp(W ),Ω±)

is the classical Kuga–Satake morphism constructed by Deligne [20] and André [5].

5.5 Uniform Kuga–Satake for hyper-Kähler varieties

Given a deformation type M of hyper-Kähler varieties with ΛM = Λ, we can define the so-
called uniform Kuga–Satake construction, which extends the construction in [74]. The idea of
the uniform Kuga–Satake construction has its origin in [19], which uses the theory of the moduli
space of stable sheaves instead of the Shimura variety, and is called Zarhin’s trick for K3 surfaces.

The first step is to embed the lattice Λh of signature (2, n) primitively into a fixed unimodular
lattice of signature (2, ∗) for any h.

Lemma 5.11 (Uniform lattice). Given an even lattice (Λ, q) of signature (3, n), there exists an
even unimodular lattice Σ of signature (2, ∗), depending only on rk(Λ), such that there is a
primitive embedding

h⊥ = Λh ↪→ Σ, (5.7)

for any h ∈ Λ with q(h) > 0.

Proof. By Nikulin [62, Theorem 1.12.4], any even lattice L of signature (2, n) admits a primitive
embedding into a fixed even unimodular lattice Σ of signature (2, N) with N ⩾ 2 rk(L)− 2 and
8|(N − 2). One can thus choose N ⩾ 2n+ 2 satisfying 8|(N − 2) and let

Σ = U⊕2 ⊕ E⊕d
8

with d = N−2
8 .

Remark 5.12. If the Beauville–Bogomolov lattice Λ is not even (cf. Remark 2.1), Lemma 5.11
does not apply. Nevertheless, we can always multiply the Beauville–Bogomolov quadratic form
on H2(X,Z) by 2; this operation will not affect any construction. In the sequel, we assume that
the lattice Λ (hence also Λh) is even .

For a lattice L, we writeGL = SO(LQ) for short. The inclusion (5.7) defines a mapDΛh
→ DΣ,

which gives an embedding of Shimura data

ιh : (GΛh
, DΛh

)→ (GΣ, DΣ).

Let K ⊆ GΣ(Af ) be a compact open subgroup. Then for any compact open subgroup Kh ⊆
GΛh

(Af ) with ιh(Kh) ⊆ K, we have a finite and unramified map

ShKh
(GΛh

, DΛh
)→ ShK(GΣ, DΣ). (5.8)

defined over Q.

If K is contained in the discriminant kernel KΣ, then we get a section as (5.6) for

ad(C) : ShKsp(GSpin(Σ), D̃L)(C)→ ShK(GΣ, DL)(C) = ShK(Σ)(C).
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In particular, we take the following level-m structures for m ⩾ 3

K′
m := Kad

Σ,m and K′′
m :=

{
g ∈ GSp(W )(Ẑ)

∣∣g ≡ 1 mod m
}
, (5.9)

where W = (Cl+(ΣQ), φe) the symplectic space described in § 5.4. For any d ∈ Z⩾1, we have the
following commutative diagram of stacks over Q

ShKsp
Σ,m

(GSpin(Σ), D̃Σ)

F̃ †
d,Km

ShK′
m
(Σ) ShK′′

m
(GSp(W ),Ω±)

F̃ †
d Sh(Σ)

sp
ad

jΣ◦Pd,Km

γEm

jΣ◦Pd

(5.10)

where γEm is the descent of a chosen section γC to the finite abelian extension Em of Q corre-
sponding to R>0Q×N(Ksp

Σ,m) ⊆ A×
Q via the class field theory. We now obtain a map

ΨKS
d,Km,C : F̃ †

d,Km
(C)→ ShK′′

m
(GSp(W ),Ω±)(C) (5.11)

as the composition, which is quasi-finite. It is called the uniform Kuga–Satake map. By the
construction, we have the following descent theorem.

Theorem 5.13. The uniform Kuga–Satake map ΨKS
d,Km,C descends to map

ΨKS
d,Km

: F̃ †
d,Km

→ ShK′′
n
(GSp(W ),Ω±)

over the number field Em. The field Em is clearly independent of d and h.

Proof. The ΨKS
d,Km,C has a descent over Em as the period map F̃ †

d,Km
(C)→ ShKm(Λh)(C) has a

descent over Q by Proposition 5.9. It is clear that Em is independent of h.

Definition 5.14. If f : T → F̃ †
d,Km

is a map corresponding to a polarized oriented hyper-
Kähler space with level structure (X, ξ, α) over T . We define the uniform Kuga–Satake abelian
space AT → T associated with f as the pullback of the universal polarized abelian scheme on
ShK′′

m
(GSp(W ),Ω) under the composition

T → F̃ †
d,Km

→ ShK′′
m
(GSp(W ),Ω±). (5.12)

Suppose f : SpecF → ShK′
m
(Σ) comes from a F -point of F̃ †

d,Km
, which represents the tuple

of polarized hyper-Kähler variety (X,H,α) with a Km-level structure.

Proposition 5.15. Let (A,L) be the associated uniform Kuga–Satake polarized abelian variety
of (X,H,α). Then there is a Galois-equivariant lattice embedding

P2
ét(XF̄ , Ẑ(1)) ∼= f∗(Σ) ↪→ EndCl+(Σ)

(
H1

ét(AF̄ , Ẑ)
)

such that Gal(F/F ) acts trivially on the orthogonal complement.

Proof. This was proved in [50] and [74].

Corollary 5.16. Let p ∈ SpecR be a prime ideal of height 1. IfX has essentially good reduction
at p, then the associated Kuga–Satake variety AX admits good reduction at p, i.e. there exists
a smooth projective model over the localization Rp whose generic fiber is isomorphic to AX .
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Proof. By the argument in [5, Lemma 9.3.1] (see also [81, Proposition 4.2.4]), it suffices to show
that H2

ét(Xk,Zℓ) is unramified at p for some odd prime number ℓ, which is different from the
residue characteristic of Rp. Here, we use the fact that m is coprime to the residue characteristic
of Rp and m ⩾ 3, so that we can apply the Raynaud semi-abelian reduction criterion.

We take a finite unramified extension V of R̂p and a smooth proper algebraic space Y over V as
in Definition 3.4. Let F be the fraction field of V . By the smooth and proper base change theorem,
H2

ét(YF̄ ,Zℓ) is unramified at p as a Gal(F̄ /F )-representation. By the proof of Proposition 3.3, it
concludes the proof.

6. Finiteness of twists admitting essentially good reduction

As an intermediate step towards the Shafarevich conjecture for polarized hyper-Kähler varieties,
we prove, in Proposition 6.3 below, the finiteness of twists/models of polarized hyper-Kähler
varieties admitting essentially good reductions. We will make use of results in Appendix A on
specialization of birational automorphisms (Matsusaka–Mumford) in the setting of algebraic
spaces.

Lemma 6.1. Let R be a discrete valuation ring with fraction field K of characteristic zero. Let
s be the closed point of SpecR and k(s) the residue field. Let X → SpecR be a smooth proper
morphism of algebraic spaces such that the generic fiber Xη is a hyper-Kähler variety over K.
Then the special fiber Xs is a non-ruled algebraic space over k(s) (Definition A.1).

Proof. The relative canonical sheaf

ωX/R :=
∧

Ω1
X/R

is trivial, since the special fiber Xs is a principal Cartier divisor of X . Therefore, the special fiber
Xs is a smooth proper algebraic space over k(s) with a trivial canonical sheaf. Suppose, by con-
tradiction, that Xs were ruled. Take a normal projective variety V over k(s) such that P1

k(s)×V is
birationally equivalent to Xs. By using Chow’s lemma and taking the elimination of indetermina-
cies, there exists a projective normal scheme W over k(s) with projective birational morphisms
f : W → Xs and g : W → P1

k(s)×V . Take a canonical (Weil) divisor KW on W . We define a Weil

divisor KXs as the push-forward f∗(KW ). We also set KP1
k(s)

×V := g∗(KW ). By étale descent, we

have O(KXs) ≃ ωXs/k(s). Moreover, we have a natural isomorphism f∗(OW (KW )) ≃ OXs(KXs),
since Xs has terminal singularities étale locally. On the other hand, we have a natural inclu-
sion g∗(OW (KW )) ↪→ OP1

k(s)
×V (KP1×V ). Thus Γ(P1

k(s)×V ,OP1
k(s)

×V (KP1
k(s)

×V )) ̸= 0, a contradic-

tion.

Lemma 6.2. Let R be a henselian discrete valuation ring with K = FracR. Let (X,L ), (Y,M )

be polarized hyper-Kähler varieties over K. Let f : (XK ,LK)
≃→ (YK ,MK) be an isomorphism

of polarized varieties over K with the associated 1-cocycle

αf : Gal(K/K)→ G := Aut(XK ,LK)

defined by αf (σ) = f−1 ◦σf . Assume that

– the order of G is invertible in the residue field of R,

– there exist proper smooth algebraic spaces X ′,Y ′ over R whose generic fibers are hyper-
Kähler varieties such that there are birational maps X 99K X ′

η, Y 99K Y ′
η over K.

Then the restriction of αf to the inertia subgroup IK ⊂ Gal(K/K) is trivial.
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Proof. Take a finite Galois extension L/K such that G = Aut(XL,LL) and f come from an

isomorphism fL : (XL,LL)
≃→ (YL,ML) over L. The 1-cocycle αf comes from a 1-cocycle

αf,L : Gal(L/K)→ G

corresponding to fL. Let IL/K ⊂ Gal(L/K) be the inertia group. For an element σ ∈ IL/K , we
have αf,L(σ) := (fL)

−1 ◦σfL and we shall show that αf,L(σ) = id.

Let X ′
OL,s

, Y ′
OL,s

be the special fibers of X ′
OL

:= X ′ ⊗OK
OL, Y ′

OL
:= Y ′ ⊗OK

OL, respectively.

We note that the isomorphism fL : XL
≃→ YL can be considered as a birational map

fL : X ′
L

≃
99K Y ′

L.

Here, we put X ′
L := X ′ ⊗OK

L and Y ′
L := Y ′ ⊗OK

L. By Theorem A.2 and Lemma 6.1, the
birational map fL extends to an isomorphism

f̃L : (X ′
OL
\ V )

≃→ (Y ′
OL
\W )

over OL for some proper closed subsets V ⊂ X ′
OL

, W ⊂ Y ′
OL

satisfying Vs ̸= X ′
OL,s

, Ws ̸= Y ′
OL,s

.
Enlarging V and W if necessary, by Lemma A.3, we may assume the following holds: The action
of G = Aut(XL,LL) on XL extends to a homomorphism

ψ : G → Aut(X ′
OL
\ V ).

Since σ ∈ IL/K acts trivially on the residue field of OL, the isomorphisms

f̃L : (X ′
OL
\ V )

≃→ (Y ′
OL
\W ) and σf̃L : (X ′

OL
\ σ(V ))

≃→ (Y ′
OL
\ σ(W ))

induce the same morphism on the special fiber. Thus, the element

αf,L(σ) = (fL)
−1 ◦σfL ∈ G ⊂ Bir(XL)

sits in the kernel of the specialization map

ψ : G → Aut((X ′
OL
\ V )s).

Since the order of G is invertible in the residue field of R, the specialization map

G → Aut((X ′
OL
\ V )s)

is injective by Lemma A.3 (2). Therefore, we have αf,L(σ) = id.

Proposition 6.3. Let R be a finitely generated Z-algebra that is a normal integral domain
with fraction field F . Let X be a hyper-Kähler variety over F which admits essentially good
reduction at any height 1 prime ideal p ∈ SpecR. Let L be an ample line bundle on X. Then
there exist only finitely many isomorphism classes of polarized varieties (Y,M ) over F satisfying
the following conditions :

– Y admits essentially good reduction at any height 1 prime p ∈ SpecR.

– There exists an isomorphism of polarized varieties (XF ,LF ) ≃ (YF ,MF ) over F .

Proof. We put G := Aut(XF ,LF ). Shrinking SpecR if necessary, we may assume that the order
of G is invertible in R. Note that G can be considered as a finite subgroup of Bir(XF ).

We take a finite Galois extension L/F such that Aut(XL,LL) = Aut(XF ,LF ). Let

f : (XF ,LF ) ≃ (YF ,MF )

be any isomorphism of polarized varieties over F , where (Y,M ) is any polarized variety satisfying
the properties in the statement. The associated 1-cocycle αf : Gal(F/F ) → G is defined by
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αf (σ) := (f)−1 ◦σ f . It is enough to show that there are only finitely many possibilities for the
1-cocycle αf .

Note that αf |Gal(F/L) : Gal(F/L) → G is a group homomorphism. Therefore, the field ex-

tension M/L corresponding to the kernel of αf |Gal(F/L) satisfies [M : L] < |G |. Let R′ be a

normalization of R in L, and p a height 1 prime ideal of R′. By the assumption, there exists
a finite étale extension R̂′

p ⊂ S such that there exist smooth proper algebraic spaces over S
whose generic fibers are hyper-Kähler varieties that are birationally equivalent to XFracS and
YFracS , respectively. Therefore, by Lemma 6.2, the inertia subgroup Ip ⊂ Gal(F/L) (which is
defined by fixing the extension of valuation p to F ) is contained in the kernel of αf |Gal(F/L). By

Zariski–Nagata’s purity theorem, αf |Gal(F/L) factors through π1(SpecR
′, F ). By [26, Proposition

2.3, Theorem 2.9], the family of subsets

C := {H ⊂ π1(SpecR′, F ) : open subgroup | [π1(SpecR′, F ) : H] ⩽ |G |}

is a finite set. LetM ′ be the fraction field of the finite étale cover of R′ corresponding to
⋂
H⊂C H,

and M ′′ the Galois closure of M ′ over K. We note that M ′′ does not depend on (Y,M ). Then
αf factors through the finite group Gal(M ′′/L), so there are only finitely many possibilities for
the 1-cocycle αf . This finishes the proof.

7. Finiteness of (unpolarized) Shafarevich sets

In this section, we prove the unpolarized Shafarevich conjecture stated in Theorem 1.4.

7.1 Some reductions

In order to apply the uniform Kuga–Satake map, we need to associate each polarized oriented
hyper-Kähler variety with a level structure. We start with the following result.

Lemma 7.1. Keep the notations the same as in (5.9). Let M be a Ẑ-numerically equivalent class
of hyper-Kähler varieties. For a hyper-Kähler variety X over a field F of characteristic 0 in M ,
we have

[KΛh
: Km] ⩽ Cm

2(b2(M)−2)
,

where we denote

C := [SO(H2
ét(XF ,Z2)) : f(GSpin(H2

ét(XF .Z2)))],

and f : GSpin→ SO is the natural homomorphism defined by the conjugation.

Proof. This follows from the same argument as in [77, Corollary 3.1.8].

Let δ(m,M) be the constant Cm2
(b2(XF

)−2)

as in Lemma 7.1, which depends only on m and
the Ẑ-numerical type M .

Proposition 7.2. Let R be a finitely generated Z-algebra that is an integral domain, and let F
be its fraction field. Let M be a Ẑ-numerical type.

(i) For any oriented polarized hyper-Kähler variety (X,H, ω) of type M defined over F , there
is a finite field extension E/F of degree ⩽ δ(m,M), such that (XE , HE) is equipped with a
Km-level structure.

(ii) There exists a finite Galois extension Em over F such that for every elementX ∈ ShafessM (F,R),
the following hold.
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(a) there exists a polarization λ on X of degree d, an orientation ω on XEm , a Km-level
structure α on XEm .

(b) PicXEm
= PicXF

.

Proof. For (i), we note that we have the Cartesian diagram (5.4). It suffices to show that for any
map SpecF → Sh(Λh) there exists E/F such that we can find a lift to ShKm(Λh) after a finite
base change to E. The image of Gal(F̄ /F ) lies in Km if the composition of continuous group
homomorphisms

Gal(F̄ /F )
ρx−→ KΛh

→ KΛh
/Km

is trivial. Thus we can take E to be the Galois extension corresponding to the kernel of this
composition. We can see [E : F ] ⩽ δ(m,M) by Lemma 7.1.

For (ii), we notice that the representation ρx factors through a continuous homomorphism
ρx,R : π1(R, F̄ )→ KΛh

under the condition of essentially good reduction. The Hermite–Minkowski
theorem (see [22, Chap. VI, Sect. 2] or [26, Proposition 2.3, Theorem 2.9]) implies that there
are only finitely many compositions of ρx,R with the quotient map KΛh

→ KΛh
/Km. Thus

we can take a finite dominant étale morphism Spec(R̃) → Spec(R), so that the image of
π1(R̃, F̄ ) ⊂ π1(R, F̄ ) lies in Km under any such ρx. Let E be the fraction field of R̃. Then any
XE will be equipped with a Km-level structure by the construction. With a similar argument,
we can also assume that any XE has an orientation ω.

On the other hand, the image of the Galois action

γ : GF → GL(PicXF
)

is a finite subgroup. Since a finite subgroup is mapped injectively to GL(PicXF
⊗Z F3), we have

|GF / ker γ| ⩽ |GL(r,F3)|, where r is the Picard number of XF , which is bounded above by
N . Therefore, we can take a field Em satisfying both (a) and (b) by the Hermite–Minkowski
theorem.

The following result allows us to take finite field extensions in proving the finiteness of Sha-
farevich sets.

Lemma 7.3. Let RE/R be a finite Galois extension between finitely generated normal domains
whose fraction field is E/F . We define

ShafM (E/F,RE) =
{
X ′ ∈ ShafM (E,RE) |X ′ ∼= X ×F Spec(E) for some X ∈ ShafM (F,R)

}
For any X ∈ Shaf(F,R), the set

{Y ∈ ShafM (F,R)| YE ∼= XE}

is finite. If ShafM (E/F,RE) is finite, then ShafM (F,R) is finite. Similar result holds for the
finiteness of birational isomorphism classes of the Shafarevich sets.

Proof. See [74, Lemma 4.1.4].

7.2 Finiteness of Picard lattices

The key application of the uniform Kuga–Satake map is the following finiteness result on Picard
lattices; compare to She [74, Corollary 4.1.14].

Theorem 7.4. Suppose F contains the number field E4 in Proposition 7.2 (ii). Then the set

{PicX | X ∈ ShafessM (F,R)}/lattice isometry
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is finite.

Proof. This follows from the same argument as in [74, 77]. We nevertheless give some details of
the proof for hyper-Kähler varieties. The main difference to the case of K3 surfaces is that the
BB-form is now not unimodular in general. As there are only finitely many deformation types
with a given Ẑ-numerical type, we may assume that all X ∈ ShafessM (F,R) are geometrically
deformation equivalent. Let E be the finite extension of F such that all elements in ShafessM (F,R)
admit K4-level structures. Consider the transcendental lattice

T(XE) := Pic⊥XE
⊆ H2(XC,Z).

Then from the Tate conjecture over finitely generated fields (Proposition 2.7), we know that

T(XE)⊗ Ẑ ∼= (P2
ét(XĒ , Ẑ(1))

GE )⊥ ⊆ P2
ét(XĒ , Ẑ(1)).

On the other hand, we have

(P2
ét((XF , λF ), Ẑ(1))

GF )⊥ = (f∗(Σ)GF )⊥,

by Proposition 5.15. Since the image in ShK′
4
(Σ)(E) of the E-isomorphism classes in the set

Shafhomℓ
M (F,R) is finite by Lemma 5.16, [22, VI, § 1, Theorem 2], we can show that

{(f∗(Σ)GF )⊥ | X ∈ ShafessM (F,R)}/lattice isometry

is a finite set.

Now, using [44, San 30.2], we know that the collection of primitive embeddings

T(XE)→ Λ

is finite. It follows that the set of lattices PicXE
= T(XE)

⊥ is finite. As there are only finitely
many conjugacy classes of homomorphisms Gal(E/F ) → O(PicXE

) (see [68, Theorem 4.3]), we
get the finiteness of PicX .

7.3 Proof of Theorem 1.4

Let us consider the natural maps∐
d⩽N

ShafessM,d(F,R)→ ShafessM (F,R)↠ ShafessM (F,R)/∼F -bir. (7.1)

First, we have the following result for the polarized Shafarevich set with essentially good
reductions.

Theorem 7.5. ShafessM,d(F,R) is a finite set.

Proof. Thanks to Proposition 6.3, it suffices to show there are only finitely many geometric
isomorphism classes in ShafessM,d(F,R). In [5, Section 9.4], André has shown that there are only
finitely many geometric isomorphism classes in ShafM,d(F,R) via the usual Kuga–Satake con-
struction. A similar proof also applies here:

For any (X,H) ∈ ShafessM,d(F,R) equipped with a K4-level structure α over F , the corre-
sponding uniform Kuga–Satake abelian variety has good reductions according to Corollary 5.16.
Therefore, the image of the set of C-points corresponding to those (X,H,α), under ΨKS

d,K4,C is
finite by [22, VI, § 1, Theorem 2]. As the uniform Kuga–Satake map is geometrically quasi-finite,
this means that the geometric isomorphism classes of (X,H,α) are finite, which proves our
assertion.
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Theorem 7.6. There exists an integer N such that for anyX ∈ ShafessM (F,R), there is a polarized
hyper-Kähler variety (Y,H) ∈ ShafessM,d(F,R) such that Y is F -birational to X and d ⩽ N . In
other words, the composition map in (7.1) is surjective for some N .

Proof. By Theorem 7.4, there are only finitely many isomorphism classes of lattices PicX for
X ∈ ShafessM (F,R). Fix an embedding F ↪→ C. By Proposition 7.2 (ii) and Lemma 7.3, we may
further assume that PicX ∼= Pic(XC) for every X ∈ ShafessM (F,R). Let us fix a (geometric) Picard
lattice Ξ and consider the moduli space of Ξ-lattice polarized hyper-Kähler varieties of a given
deformation type M . As it is of finite type over a field, it suffices to consider its geometric
irreducible components one by one.

Fix such a component and take an X ∈ ShafessM (F,R) in this component such that Pic(XC) ∼=
PicX ∼= Ξ (if there is no such X, then the component is irrelevant to the question). We claim that
there exists an integer N , such that for each hyper-Kähler variety X ′ defined over F satisfying
the following conditions:

– Pic(X ′
C)
∼= PicX′ ∼= Ξ,

– the Ξ-lattice-polarized hyper-Kähler manifolds (XC,Pic(XC) and (X ′
C,Pic(X

′
C)) are defor-

mation equivalent;

there exists a hyper-Kähler variety Y defined over F which is F -birational to X ′ and endowed
with a polarization H of Beauville–Bogomolov square ⩽ N .

Let W(XC) ⊆ Ξ be the collection of wall divisors on XC. We define N as follows:

N := inf{v2 > 0| v ∈ Ξ, v · w ̸= 0, ∀w ∈ W(XC)}. (7.2)

From the assumption, the deformation invariance of wall divisors (see [2]) induces an identification
between W(X ′

C) and W(XC). Recall that the set of birational ample classes in PicX′ is given by

{v ∈ PicX′ | v · w ̸= 0 ∀w ∈ W(X ′
C)}.

It follows that d := inf{v2 > 0| v ∈ PicX′ and v · w ̸= 0 ∀w ∈ W(X ′
C)} is no greater than N .

Take H ′ ∈ PicX′ with (H ′)2 = d, then consider the polarized variety over F :

(Y,H) :=

(
Proj

⊕
m

H0(X ′,O(mH ′)),O(1)

)
.

By the minimal model theory for hyper-Kähler varieties, (YC, H) is a polarized hyper-Kähler
variety, which is F -birationally equivalent to X, hence of deformation type M by [28, Theorem
4.6]. Hence (Y,H) is also hyper-Kähler and satisfies all the desired properties.

Now let us conclude the proof of Theorem 1.4. The finiteness of ShafessM (F,R)/F -bir follows
from the combination of Theorem 7.5 and Theorem 7.6. If b2(M) ⩾ 5, then the second map in
(7.1) has finite fibers by Theorem 2.13, and the finiteness of ShafessM (F,R) follows.

8. Cohomological Shafarevich conjecture

In this section, we give examples where ShafhomM (F, S), even ShafhomM,d(F, S) is infinite. Hence, the
naive cohomological generalization of the Shafarevich conjecture fails in general. We propose a
remedy by taking into account the cohomology of degrees other than 2.
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8.1 Failure of the (second) cohomological Shafarevich conjecture

Let X be a hyper-Kähler variety defined over a number field F and H is a polarization of degree
d. There is a bijection between the set (assuming nonempty) of all F -forms of XF̄ and the Galois
cohomology

H1(Gal(F̄ /F ),Aut(XF̄ )), (8.1)

via the construction of twisting [13]. Since Aut(XF̄ ) is finitely generated by Cattaneo–Fu [17],
up to replacing F by a finite extension we can assume that Gal(F̄ /F ) acts trivially on Aut(XF̄ ).

Recall from Section 2.4 that

Aut0(X) := ker
(
Aut(X)→ GL(H2

ét(XF , Ẑ))
)
.

As a result, H1(Gal(F̄ /F ),Aut0(XF̄ )) is identified with a subset of (8.1). IfX is in ShafhomM,d (F, S),
then twisting by distinct elements in H1(Gal(F̄ /F ),Aut0(XF̄ )) gives rise to different F -forms of
(XF̄ , HF̄ ) (resp. XF̄ ), while the unramifiedness condition on the second cohomology is preserved
by construction, i.e. all those F -forms are in ShafhomM,d (F, S) (resp. ShafhomM (F, S)). If Aut0(XF )
is nontrivial, the cohomology

H1(Gal(F̄ /F ),Aut0(XF̄ )) ≃ Hom(Gal(F̄ /F ),Aut0(XF̄ ))

is infinite in general, giving rise to infinitely many elements in ShafhomM,d(F, S).

Let us give some concrete examples. Let X be a 2n-dimensional generalized Kummer type
hyper-Kähler variety. As before, by using [17], we may assume that Aut(XF ) = Aut(X). By [12,
Corollary 5], Aut0(X) is isomorphic to the semi-direct product (Z/(n+1)Z)4⋊ (Z/2Z). As there
are infinitely many degree 2 extensions of F , we obtain infinitely many homomorphisms

Gal(F/F )↠ Z/2Z,

hence infinitely many elements in Hom(Gal(F/F ),Aut0(X)). Similarly, for OG6-type hyper-
Kähler varietiesX, Aut0(X) is isomorphic to (Z/2Z)×8. By [60, Theorem 5.2], we obtain infinitely
many elements in ShafhomM,d(F, S).

We have obtained the following result:

Proposition 8.1. Let ℓ be any prime number, and S the set of places consisting of places v
with v | ℓ and ramified places of the Gal(F/F )-module H2

ét(XF ,Zℓ).

(i) The following subset of Shafhomℓ
M,d (F, S) is infinite:{

Y ∈ Shafhomℓ
M,d (F, S)

∣∣∣ YF
∼= XF

}
/∼=F (8.2)

(ii) Let T be any finite set of finite places of F . Then for almost all X in (8.2) , there exists
a finite place v /∈ S ∪ T (depending on X) such that X does not admit essentially good
reduction at v though H2

ét(XF ,Zℓ) is unramified at v. Moreover, enlarging T if necessary,
we may assume that X admits a potentially good reduction at v.

The (2) above states that the analogue of [49, Theorem 1.3 (ii)] (see also [77, Introduction])
does not hold for higher-dimensional hyper-Kähler varieties when Aut0 is nontrivial.

8.2 Full degree cohomological generalization

We have seen that the non-faithfulness of the action of automorphisms on H2 leads to the infinite-
ness of the cohomological Shafarevich sets. We provide a remedy by taking into account more
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cohomological degrees other than 2. Throughout this section, let I be a subset of N containing
2.

Define the following group

AutI(X) :=
⋂
i∈I

ker
(
Aut(Xk)→ GL

(
Hiét(Xk,Qℓ)

))
. (8.3)

By the Artin comparison theorem, the group AutI(X) is independent of ℓ, and Aut0(X) (resp. Aut00(X))
defined in Section 2.4 are nothing but Aut{2}(X) (resp. AutN(X)).

We use the following definition of level structure on the cohomology groups in several degrees.
Let k be a field of characteristic 0, and X a hyper-Kähler variety over k. We denote the torsion-
free part of

⊕
i∈I H

i
ét(Xk,Zℓ) by HIℓ (Xk).

Definition 8.2. Let H be the abstract Zℓ-module which is isomorphic to HIℓ (Xk). A level ℓn

structure β on X of degree I is a Gal(k/k)-invariant GL(H, ℓn)-orbit of an isomorphism of Zℓ-
modules

H
∼−→ HIℓ (Xk).

Here, we put

GL(H, ℓn) := {g ∈ GL(H) | g ≡ 1 mod ℓn}.

Now let R be a finitely generated Z-algebra which is a normal domain, with fraction field
denoted by F . Suppose that 1/ℓ ∈ R. Define the following generalized cohomological Shafarevich
set:

ShafI-homℓ
M (F,R) :=

{
X ∈ Shafhomℓ

M (F,R)

∣∣∣∣ HIℓ (XF )is unramified
at any height 1 prime p ∈ SpecR

}
/∼=F . (8.4)

Theorem 8.3. Consider M to be a deformation type or a Ẑ-numerical type of hyper-Kähler
varieties with b2(M) ⩾ 5. The set{

X ∈ ShafI-homℓ
M (F,R)

∣∣∣ AutI(X) = {1}
}
/∼=F (8.5)

is finite.

Proof. The proof is similar to [77, Section 4]. We need to use integral models of Shimura varieties,
an idea taught to the third author by Yoichi Mieda.

Assume b2(M) ⩾ 4. We will first prove the polarized case, i.e. the finiteness of the following
set for any positive number d:

S1 :=

{
(X,λ)

∣∣∣∣ X ∈ ShafI-homℓ
M (F,R) with AutI(X) = {1}

λ : polarization of BB degree d

}
/∼=F . (8.6)

Note that we may assume 1/ℓ ∈ R and R is regular.

In the following, we fix an integer m which is a sufficiently large power of ℓ. To avoid using
the unramifiedness of 2-adic cohomology groups, we consider the congruence level-m subgroup

K̃m :=
{
g ∈ GΣ(Ẑ)

∣∣g ≡ 1 mod m
}
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instead of the spin-level-m subgroup in (5.10). We have the following diagram:

ShKsp
Σ,m

(GSpin(Σ), D̃Σ)

F̃ †
d,Kh,m

ShKh,m
(GΛh

, DΛh
) Sh

K̃m
(GΣ, DΣ) ShK′′

m
(GSp(W ),Ω±).

spfΣ

P jΣ

We shall remark that the construction of a section for fΣ as in (5.10) fails as K′
m ∩ GΣ(Q) ⊂

K̃m ∩GΣ(Q) may be a proper arithmetic subgroup.

Consider the following set

S2 :=

{
(X,λ, ω, α)

∣∣∣∣∣ (X,λ, ω, α) ∈ F̃ †
d,Kh,m

(F )

H2
ét(XF ,Zℓ) : unramified at any height 1 prime p ∈ SpecR

}
/∼=F

Firstly, we show that there are only finitely many geometric isomorphism classes in S2. By [42,
Section 2, Section 3], the map fΣ can be extended to a morphism of integral models over R

f̃Σ : SKsp
Σ,m

(GSpin(Σ))→ S
K̃m

(Σ).

We may assume that f̃Σ is a finite étale cover. A similar proof as in Lemma 7.2 shows that there
exists a finite extension FM/F such that, for any object x ∈ S2, the F -rational point jΣ ◦ P(x)
can be lifted to an FM -valued point of zx of ShKsp

Σ,m
(GSpin(Σ)). Combining [22, VI, § 1, Theorem

2], Lemma 5.16 and the quasi-finiteness of jΣ ◦P, we can see the set of geometrical isomorphism
classes in S2 is finite.

By the choice of the level structure, the unramifiedness condition, and the proof of Lemma
7.2, one can show there exists a finite Galois extension E over F such that for every (X,λ) ∈ S2,
there exists a level K̃m-structure on (X,λ)E . Now, by the same argument as in the proof of
Lemma 7.2 and Theorem 7.5, the problem is reduced to show that

S3 :=

(X,λ, ω, α, β)

∣∣∣∣∣∣
(X,λ, ω, α) ∈ S2
β: level K̃m-structure on X of degree I
AutI(X) = {1}

/∼=F

is a finite set. Since the automorphism group of any object (X,λ, ω, α, β) ∈ S3 is trivial, the
finiteness of S3 follows from the finiteness of S2 modulo geometric isomorphic equivalences. It
finishes the proof of the polarized case.

Finally, for the general (unpolarized) case, by the choice of K̃m and Lemma 7.2, we can take
a finite extension E/F which satisfies the following:

(i) E contains the above field FM .

(ii) For any element X ∈ ShafI-homℓ
M (F,R), there exist a polarization λ on X, an orientation ω

on XE , and a level K̃m structure α on XE .

(iii) For any element X ∈ ShafI-homℓ
M (F,R), we have PicX/F (E) = PicX/F (F ).

By a similar proof of Theorem 7.4, one can also show that the set

{PicX/F (E) | X ∈ ShafI-homℓ
M (F,R)}/lattice isometry

is a finite set. Using the same argument in Theorem 7.6 and [80, Theorem 1.0.1], we can get the
boundedness of polarization when b2 ⩾ 5. The desired finiteness follows from the finiteness of
S1.
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8.3 Some consequences

We deduce from Theorem 8.3 finiteness results of the (second or full) cohomological Shafarevich
sets for projective hyper-Kähler varieties of known deformation types and unconditionally in
dimension 4:

Corollary 8.4. The following sets are finite.

(i) Shafhomℓ

K3[n](F,R) and Shafhomℓ
OG10

(F,R).

(ii) ShafI-homℓ
Kumn

(F,R) and ShafI-homℓ
OG6

(F,R), for I = N.

(iii) ShafI−homℓ
M (F,R) for dim(M) = 4 and I = N.

Proof. By Theorem 8.3, it suffices to check the vanishing of Aut0 or Aut00 for the corresponding
complex projective hyper-Kähler varieties. These vanishing results are collected in Example 2.10.

Remark 8.5. In Corollary 8.4, for the generalized Kummer type and OG6 type, one may be able
to choose I to be a smaller set. For example, for the OG6-type, I = {2, 6} is in fact enough:
for some projective OG6-type hyper-Kähler manifolds X constructed as crepant resolutions of
singular moduli spaces X, the 3-dimensional subvarieties lying over the 256 singular points of
the singular locus of X are with distinct cohomology classes in H6(X,Q) and are permuted by
Aut0(X) as a regular representation. Then by Proposition 2.9 (which holds more generally for
AutI with the same proof) and the density of projective members in the moduli space, we see
that Aut{2,6} vanishes for all OG6-type manifolds.

9. Finiteness of CM type hyper-Kähler varieties

Recall that a hyper-Kähler variety X over C is called of CM type if the Mumford–Tate group
MT(T(X)) is abelian, where T(X) ⊂ H2(X,Q) is the transcendental (rational) cohomology. The
following results allow us to study hyper-Kähler varieties of CM type through abelian varieties
of CM type.

Lemma 9.1. The Kuga–Satake variety of a complex hyper-Kähler variety X is of CM type if and
only if X is of CM type. In particular, the point

ΨKS
d,K4

(X, ξ, ω;α) ∈ ShK′′
4
(GSp(W ),Ω±)(C)

is a CM point if X is of CM type.

Proof. A proof for the statement for K3 surfaces can be found in, for example, [30, Proposition
9.3], which works for general Hodge structures of K3 type. We sketch it here for the convenience
of the readers.

Let A be the (uniform) Kuga–Satake abelian variety of X. Let MT(A) be the Mumford–
Tate group of W := H1(A,Q). The Hodge structure of W factors through h̃ in the commutative
diagram

S GSpin(Σ)R GSp(W )

GΣ,R

h̃

h ad

Therefore, the Mumford–Tate group MT(A) is contained in GSpin(Σ)Q. The commutativity of
the diagram implies that MT(T(X)) is contained in ad(MT(A)).

33



Lie Fu, Zhiyuan Li, Teppei Takamatsu and Haitao Zou

If A is of CM type, then MT(A) is abelian, and so is its image in GΣ under ad. Therefore,
MT(T(X)) is also abelian. Conversely, we note that h̃(S) ⊆ ad−1(MT(T(X))R. Thus MT(A) is
a subgroup of ad−1(MT(T(X)), which are both solvable if MT(T(X)) is abelian. Since MT(A)
is reductive, MT(A) is abelian if MT(T(X)) is abelian.

Remark 9.2. The lemma 9.1 also implies that for a hyper-Kähler variety X over a field F of
characteristic zero, being of CM type is independent of the embedding F ↪→ C.

The following finiteness result for abelian varieties of CM type is obtained by Orr–Skorobogatov.

Theorem 9.3 ([66, Theorem 2.5]). The geometric isomorphism classes of abelian varieties of
CM type defined over a number field of bounded degree form a finite set.

Moreover, they used this to deduce a finiteness result of CM points on a Shimura variety of
abelian type.

Theorem 9.4 ([66, Proposition 3.1]). Let Sh be a component of the complex points of a Shimura
variety of abelian type. The set of CM points in Sh defined over a number field of bounded degree
is finite.

We now give a proof of the generalizations of these results for hyper-Kähler varieties of CM
type.

Proof of Theorem 1.10. We need to show the finiteness of the following set:

CMd(M) =

{
X

∣∣∣∣ X is a hyper-Kähler variety over a number field F of degree ⩽ d
XC is of deformation type M and of CM type for some F ↪→ C

}
.

We first prove that the isometry class of {NS(XC)| X ∈ CMd(M)} is finite. By Proposition 7.2
(i), for any positive integer N , we can find an integer δ(4,M) such that for every X/F ∈ CMd(M)
with a polarization H of degree ⩽ N , it has a K4-level structure over a finite extension F ′/F with
[F ′ : F ] ⩽ δ(4,M). Note that δ(4,M) depends only on the Ẑ-BB form and hence is independent
of the field F and the embedding F ↪→ C.

By Lemma 9.1 and Theorem 9.4, the collection{
ΨKS
d,K4

(XC, ξC, ωC;αC)

∣∣∣∣ (X, ξ, ω;α) is a polarized oriented hyper-Kähler with a K4-level
structure defined over F ′ with [F ′ : Q] ⩽ δ(4,M)d; X ∈ CMd(M)

}
(9.1)

is finite. By a similar argument in Theorem 7.4, one can obtain the finiteness of the set of
isometry classes of geometric transcendental lattices T(XC), which implies the finiteness of the
set of isometry classes of Pic(XC).

According to the proof in Theorem 7.6, up to a birational transformation, there exists a
polarization on XC of degree ⩽ N for some N . Note that the geometric isomorphism classes of
the polarized hyper-Kähler varieties (X, ξ) with X ∈ CMd(M) and (ξ)2 ⩽ N are finite because
the Kuga–Satake map over C is quasi-finite. Thus, the geometric birational isomorphism class of
CMd(M) is finite.

When b2 ⩾ 5, the last assertion follows from Theorem 2.13.

Proof of Corollary 1.12. For a hyper-Kähler variety Y , the uniform boundedness of

|Br(Y )/Br0(Y )|
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follows from the uniform boundedness of

|Br(Y )/Br1(Y )|,

by a similar proof to [82, Proposition 6.3]. Here, Br1(Y ) := ker(Br(Y )→ Br(YF̄ ) is the algebraic
Brauer group of Y . On the other hand, we have an inclusion

Br(Y )/Br1(Y ) ⊆ Br(YF̄ )
Gal(F̄ /F ).

Therefore, it is sufficient to prove the uniform boundedness of |Br(YF̄ )Gal(F̄ /F )|.
According to [66, Theorem 5.1], for any positive integer d, there is a constant C(d,X) such

that, for any L-form Y of X with [L : F ] ⩽ d,

|Br(YF̄ )Gal(F̄ /L)| < C(d,X).

if the integral Mumford–Tate conjecture in codimension one holds. By Theorem 1.10, there is
a constant C(d) which is independent of X and C(d,X) ⩽ C(d). Then we can conclude the
uniform boundedness.

We claim that the integral Mumford–Tate conjecture holds true for hyper-Kähler varieties
with b2 ⩾ 4. From [16, Proposition 6.2], we can see that the Hodge structure on H2(X,Z) is
Hodge-maximal. Then we can follow the proof of Theorem 6.6 in loc.cit. to show that the classical
Mumford–Tate conjecture of X implies the integral version, in which we need the arithmetic
period map given in Proposition 5.9. However, the Mumford–Tate conjecture in codimension one
holds true for all hyper-Kähler varieties of b2 ⩾ 4 (see [5, Corollary 1.5.2]).

Appendix A. Matsusaka–Mumford theorem for algebraic spaces

The Matsusaka–Mumford theorem [56] states that a birational map between two algebraic vari-
eties over the fraction field of a discrete valuation ring specializes to a birational map between
the special fibers if the special fibers are non-ruled. In this appendix, we extend this theorem to
birational maps between algebraic spaces that are not necessarily schemes and study the spe-
cialization homomorphism. (Such birational maps appear naturally in the study of hyper-Kähler
varieties. See [49, Section 4.4].) The result should be known to experts, but we could not find an
appropriate reference.

We recall that for an integral and separated algebraic space X, there exists an open subspace
that is a scheme and contains a generic point of X. Moreover, there exists a largest such open
subspace, called the schematic locus of X.

Definition A.1. Let X be an n-dimensional integral separated algebraic space of finite type
over a field k. We say X is ruled if the schematic locus X ′ of X is ruled, i.e.,X ′ is k-birationally
isomorphic to P1

k × Y for some scheme Y of dimension n− 1 over k.

In the sequel, let R be a discrete valuation ring, K = FracR its fraction field, s the closed
point of SpecR, and k(s) the residue field.

Theorem A.2 (Matsusaka–Mumford for algebraic spaces). Let X ,Y be integral smooth proper

algebraic spaces over R. Suppose that the special fiber Ys is not ruled. Let f : Xη
≃
99K Yη be a

birational map between the generic fibers. Then there exist closed algebraic subspaces V ⊂ X ,
W ⊂ Y with special fibers Vs,Ws satisfying Vs ̸= Xs, Ws ̸= Ys, such that f extends to an
isomorphism over R

f̃ : X \ V ≃→ Y \W.
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Proof. The same proof as in [56, Theorem 1] (see also [54, Theorem 5.4]) works, by using the
notion of generic points and Henselian local rings of decent algebraic spaces.

We thank Tetsushi Ito for his help with the proof of the following lemma.

Lemma A.3. Let X be an integral proper smooth algebraic space over R. Suppose that the
special fiber Xs is not ruled. Let Bir(Xη) be the group of F -birational automorphisms of the
generic fiber Xη. Let G be a finite subgroup of Bir(Xη).
(i) There exists a proper closed subspaces V ⊂ X with Vs ̸= Xs and a homomorphism

ψ : G→ AutR(X \ V )

such that ψ(f)|Xη = f for any f ∈ G.
(ii) Let ψ be the specialization morphism defined as the composition

G
ψ→ AutR(X \ V )→ Aut((X \ V )s)

given by ψ(f) := ψ(f)|(X\V )s . If the characteristic of the residue field of R is 0, the map

ψ is injective. If the characteristic of the residue field of R is p > 0, the kernel of ψ is a
p-group.

Proof. (1) We put G = {f1 = id, . . . , fr}. Let Vfi ,Wfi ⊂ X be proper closed subspaces associated

with fi given by Theorem A.2 (i.e. fi extends to an isomorphism f̃i : X \ Vfi ≃ X \Wfi). Here,
we put Vf1 = ∅. We put V ′ :=

⋃r
i=1 Vfi , and

V :=

r⋃
i=1

f̃−1
i (V ′).

First, since |f̃−1
i (V ′) ∪ Vfi | is a closed subset of |X |, the subset V is a closed subspace of X .

Moreover, since we have

|f̃−1
i (f̃−1

j (V ′))| ⊂ | ˜(fj ◦ fi)
−1

(V ′) ∪ Vfj◦fi |,

we have f̃−1
i (V ) ⊂ V . Since V ′ ⊂ V , the morphism f̃i restricts to an R-morphism

f ′i : X \ V → X \ V.

Since (fi)
′◦(f−1

i )′ = (f−1
i )′◦(fi)′ = id, f ′i is an isomorphism, and V satisfies the desired condition.

(2) Take an automorphism f ∈ kerψ. Let ord(f) be the order of f . Assume that ord(f) is
invertible in the residue field of R. We shall show that f is the identity.

Since f acts trivially on (X \ V )s, it fixes every closed point x ∈ (X \ V )s. Let k(s) be the
residue field of R. We can take a k(s)-valued point x of (X \V )s, such that x is contained in the
schematic locus of (X \ V )s. It is enough to show that the action of f on the local ring OX ,x is
trivial. Let π be a uniformizer of R. Since π is not invertible in OX ,x, we have

⋂
n⩾1 π

nOX ,x = (0)
by Krull’s intersection theorem; see [55, Theorem 8.10]. Therefore, it is enough to show that the
action of f on OX ,x/π

nOX ,x is trivial for every n ⩾ 1. We shall prove the assertion by induction
on n. We put An := OX ,x/π

nOX ,x. When n = 1, it follows because f acts trivially on the special
fiber (X \ V )s. If the assertion holds for some n ⩾ 1, the exact sequence

0→ πnAn+1 → An+1 → An → 0

shows that, for an element a ∈ An+1, we have f∗(a) = a + πnb for some b ∈ An+1 (here the
action of f on An+1 is denoted by f∗). Since πn+1 = 0 in An+1, we have (f∗)r(a) = a+ rπnb for
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every r ⩾ 1. In particular, we have

(f∗)ord(f)(a) = a+ ord(f)πnb = a.

Since πnAn+1 is a vector space over k(x) and ord(f) is invertible in the residue field, we have
πnb = 0. Thus, the action of f on An+1 is trivial. By induction on n, the assertion is proved.

Remark A.4. If Aut(Xη) is infinite, a homomorphism

Aut(Xη)→ Aut(X \ V )

may not exist for any choice of V ⊂ Xs. The problem is that there might be infinitely many
closed subsets that should be removed from X if we apply Lemma A.2. On the other hand, there
is a well-defined specialization homomorphism

Bir(Xη)→ Bir(Xs),

where Bir(−) denotes the group of birational automorphisms; see [45, p. 191-192, Exercises 1.17].

Remark A.5. There does not exist a specialization map

Aut(Xη)→ Aut(Xs)

in general. The problem is that an automorphism of the generic fiber does not always extend
to an automorphism of the integral model. Such an extension exists for abelian varieties ([14,
Theorem 1.4.3]), but fails in general for for K3 surfaces ([49, Example 5.4]). However, since any
birational map between K3 surfaces can be extended to an automorphism, there still exists a map
Aut(Xη)→ Aut(Xs) for K3 surfaces. On the other hand, suppose that there exists a polarization
on X (this does not hold in general, see [54, Example 5.2]), then by Matsusaka–Mumford [56,
Theorem 2], there always exists a specialization map

Aut(Xη,LXη)→ Aut(Xs,LXs).

provided that the special fiber is non-ruled. This map is used in André’s proof of the Shafarevich
conjecture for (very) polarized hyper-Kähler varieties; see the proof of [5, Lemma 9.3.1].
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