• The high temperature crossover for general 2D Coulomb gases
    Akemann G, Byun SS (2019)
    J. Stat. Phys. 175: 1043–1065
    arXiv | DOI
  • Universal Signature from Integrability to Chaos in Dissipative Open Quantum Systems
    Akemann G, Kieburg M, Mielke A (2019)
    Phys. Rev. Lett. 123(25): Article No. 254101, 6pp.
    arXiv | DOI
  • Preserving Topology while Breaking Chirality: From Chiral Orthogonal to Anti-symmetric Hermitian Ensemble
    Akemann G, Kieburg M, Mielke A, Vidal P (2019)
    J. Stat. Mech.: Article No. 023102, 51pp.
    arXiv | DOI
  • Flocking behaviors of a Cucker–Smale ensemble in a cylindrical domain
    Bae H.-O., Ha SY, Kim J, Ko D., Son S. (2019)
    SIAM J. Math. Anal. 51(3): 2390–2424
    DOI
  • Robust Hölder Estimates for Parabolic Nonlocal Operators
    Chaker J, Kassmann M, Weidner M (2019)
    arXiv:1912.09919.
    arXiv
  • Well-posedness in a critical space of Chern-Simons-Dirac system in the Lorenz gauge
    Cho Y, Hong S (2019)
    arXiv:1912.06790.
    arXiv
  • Asymptotic analysis for Vlasov–Fokker–Planck/compressible Navier–Stokes equations with a density-dependent viscosity
    Choi YP, Jung J (2019)
    arXiv:1901.01221.
    arXiv | DOI
  • Time-delay effect on the flocking in an ensemble of thermomechanical Cucker–Smale particles
    Dong JG, Ha SY, Kim D, Kim J (2019)
    J. Differ. Equ. 266(5): 2373–2407
    DOI
  • Random affine simplexes
    Götze F, Gusakova A, Zaporozhets D (2019)
    J. Appl. Probab. 56(1): 39–51
    arXiv | DOI
  • A local sensitivity analysis for the kinetic Kuramoto equation with random inputs
    Ha SY, Jin S, Jung J (2019)
    Netw. Heterog. Media 14(2): 317–340
    DOI
  • Emergent behaviors of the swarmalator model for position-phase aggregation
    Ha SY, Jung J, Kim J, Park J, Zhang X (2019)
    Math. Models Methods Appl. Sci. 29(12): 2225–2269
    DOI
  • Emergence of anomalous flocking in the fractional Cucker–Smale model
    Ha SY, Jung J, Kuchling P (2019)
    Discrete Contin. Dyn. Syst. 39(9): 5465–5489
    DOI
  • Infinite particle systems with collective behaviour and related mesoscopic equations
    Ha SY, Kim J, Kuchling P, Kutoviy O (2019)
    J. Math. Phys. 60: Article No. 122704, 18pp.
    DOI
  • Uniform stability and mean-field limit of a thermodynamic Cucker–Smale model
    Ha SY, Kim J, Min CH, Ruggeri T, Zhang X (2019)
    Q. Appl. Math. 77: 113–176
    DOI
  • Complete cluster predictability of the Cucker–Smale flocking model on the real line
    Ha SY, Kim J, Park J, Zhang X (2019)
    Arch. Ration. Mech. Anal. 231: 319–365
    DOI
  • A probabilistic approach for the mean-field limit to the Cucker–Smale model with a singular communication
    Ha SY, Kim J, Pickl P, Zhang X (2019)
    Kinet. Relat. Models 12(5): 1045–1067
    DOI
  • Uniform Strichartz estimates on the lattice
    Hong Y, Yang C (2019)
    Discrete Contin. Dyn. Syst. 39(6): 3239–3264
    arXiv | DOI
  • Strong Convergence for Discrete Nonlinear Schrödinger equations in the Continuum Limit
    Hong Y, Yang C (2019)
    SIAM J. Math. Anal. 51(2): 1297–1320
    arXiv | DOI
  • Universal broadening of zero modes: A general framework and identification
    Kieburg M, Mielke A, Splittorff K. (2019)
    Phys. Rev. E 99: Article No. 052112pp.
    arXiv | DOI
  • Scattering for Defocusing generalized Benjamin–Ono Equation in the Energy Space
    Kim K, Kwon S (2019)
    Trans. Am. Math. Soc. 372(7): 5011–5067
    arXiv | DOI
  • Boundary regularity for nonlocal operators with kernels of variable orders
    Kim M, Kim P, Lee J, Lee KA (2019)
    J. Funct. Anal. 277(1): 279–332
    arXiv | DOI
  • Heat kernels of non-symmetric jump processes with exponentially decaying jumping kernel
    Kim P, Lee J (2019)
    Stoch. Process. Appl. 129(6): 2130–2173
    arXiv | DOI
  • SDEs with singular drifts and multiplicative noise on general space-time domains
    Ling C, Röckner M, Zhu X (2019)
    arXiv:1910.03989.
    arXiv
  • Small data scattering of semirelativistic Hartree equation
    Yang C (2019)
    Nonlinear Anal. 178: 41–55
    arXiv | DOI
  • Scattering results for Dirac Hartree-type equations with small initial data
    Yang C (2019)
    Commun. Pure Appl. Anal. 18(4): 1711–1734
    arXiv | DOI