• Estimates on the tail probabilities of subordinators and applications to general time fractional equations
    Cho S, Kim P (2020)
    Stoch. Process. Appl. 130(7): 4392–4443
    arXiv | DOI
  • Almost critical regularity of non-abelian Chern-Simons-Higgs system in the Lorenz gauge
    Cho Y, Hong S (2020)
    arXiv:2002.04154.
    arXiv
  • On the global well-posedness of focusing energy-critical inhomogeneous NLS
    Cho Y, Hong S, Lee K (2020)
    J. Evol. Equ. 20: 1349–1380
    arXiv | DOI
  • On the coupling of kinetic thermomechanical Cucker–Smale equation and compressible viscous fluid system
    Choi YP, Ha SY, Jung J, Kim J (2020)
    J. Math. Fluid Mech. 22: Article No. 4, 34pp.
    DOI
  • On the stochastic flocking of the Cucker-Smale flock with randomly switching topologies
    Dong JG, Ha SY, Jung J, Kim D (2020)
    SIAM J. Control Optim. 58(4): 2332–2353
    arXiv | DOI
  • Mosco convergence of nonlocal to local quadratic forms
    Foghem Gonoue GF, Kassmann M, Voigt P (2020)
    Nonlinear Anal. 193: Article No. 111504, 22pp.
    arXiv | DOI
  • Random attractors for locally monotone stochastic partial differential equations
    Gess B, Liu W, Schenke A (2020)
    J. Differ. Equ. 269(4): 3414–3455
    arXiv | DOI
  • On the distribution of Salem numbers
    Götze F, Gusakova A (2020)
    J. Number Theory 216: 192–215
    arXiv | DOI
  • Distribution of Complex Algebraic Numbers on the Unit Circle
    Götze F, Gusakova A, Kabluchko Z, Zaporozhets D (2020)
    J. Math. Sci. 251(1): 54–66
    DOI
  • Local sensitivity analysis for the Kuramoto–Daido model with random inputs in a large coupling regime
    Ha SY, Jin S, Jung J (2020)
    SIAM J. Math. Anal. 52(2): 2000–2040
    DOI
  • A local sensitivity analysis for the hydrodynamic Cucker-Smale model with random inputs
    Ha SY, Jin S, Jung J, Shim W (2020)
    J. Differ. Equ. 268: 636–679
    DOI
  • Sobolev Spaces and Calculus of Variations on Fractals
    Hinz M, Koch D, Meinert M (2020)
    in: Analysis, Probability and Mathematical Physics on Fractals. World Scientific, 419–450
    arXiv | DOI
  • On the viscous Burgers equation on metric graphs and fractals
    Hinz M, Meinert M (2020)
    J. Fractal Geom. 7(2): 137–182
    arXiv | DOI
  • Hydrodynamic limit of the kinetic thermomechanical Cucker–Smale model in a strong local alignment regime
    Kang MJ, Ha SY, Kim J, Shim W (2020)
    Commun. Pure Appl. Anal. 19(3): 1233–1256
    DOI
  • Universal distributions from non-Hermitian Perturbation of Zero-Modes
    Kieburg M, Mielke A, Rud M, Splittorff K (2020)
    Phys. Rev. E 101: Article No. 032117, 12pp.
    arXiv | DOI
  • Stochastic Lohe Matrix Model on the Lie Group and Mean-Field Limit
    Kim D, Kim J (2020)
    J. Stat. Phys 178: 1467–1514
    DOI
  • Blow-up dynamics for smooth finite energy radial data solutions to the self-dual Chern-Simons-Schrödinger equation
    Kim K, Kwon S, Oh SJ (2020)
    To appear in Ann. Sci. Éc. Norm. Supér
    arXiv:2010.03252.
    arXiv
  • Regularity for fully nonlinear integro-differential operators with kernels of variable orders
    Kim M, Lee KA (2020)
    Nonlinear Anal. 193: Article No. 111312, 27pp.
    arXiv | DOI
  • On the notion of effective impedance
    Muranova A (2020)
    Oper. Matrices 14(3): 723–741
    arXiv | DOI
  • On Cherny's results in infinite dimensions: A theorem dual to Yamada–Watanabe
    Rehmeier M (2020)
    Stochastics and Partial Differential Equations: Analysis and Computations 9: 33–70
    arXiv | DOI
  • On Strichartz estimates from $\ell^2$-decoupling and applications
    Schippa R (2020)
    arXiv | DOI
  • Local and global well-posedness of dispersion generalized Benjamin–Ono equations on the circle
    Schippa R (2020)
    Nonlinear Anal. 196: Article No. 111777, 38pp.
    arXiv | DOI
  • On the Cauchy problem for higher dimensional Benjamin–Ono and Zakharov–Kuznetsov equations
    Schippa R (2020)
    Discrete Contin. Dyn. Syst. 40(9): 5189–5215
    arXiv | DOI
  • On short-time bilinear Strichartz estimates and applications to the Shrira equation
    Schippa R (2020)
    Nonlinear Anal. 198: Article No. 111910, 22pp.
    arXiv | DOI
  • On the existence of periodic solutions to the modified Korteweg–de Vries equation below $H^{\frac{1}{2}}(\mathbb{T})$
    Schippa R (2020)
    J. Evol. Equ. 20: 725–776
    arXiv | DOI