• Territorial behaviour of buzzards versus random matrix spacing distributions
    Akemann G, Baake M, Chakarov N, Krüger O, Mielke A, Ottensmann M, Werdehausen R (2021)
    J. Theor. Biol. 509: Article No. 110475, 7pp.
    arXiv | DOI
  • A non-Hermitian generalisation of the Marchenko–Pastur distribution: from the circular law to multi-criticality
    Akemann G, Byun SS, Kang NG (2021)
    Ann. Henri Poincaré 22: 1035–1068
    arXiv | DOI
  • Self-adjoint Laplacians on partially and generalized hyperbolic attractors
    Alikhanloo S, Hinz M (2021)
    arXiv:2105.04470.
    arXiv | DOI
  • Global gradient estimates for a general class of quasilinear elliptic equations with Orlicz growth
    Baasandorj S, Byun SS, Lee HS (2021)
    Proc. Am. Math. Soc. 149(10): 4189–4206
    PUB | DOI
  • Calderón-Zygmund estimates for elliptic double phase problems with variable exponents
    Byun SS, Lee HS (2021)
    J. Math. Anal. Appl. 501(1), Article No. 124015, 31pp.
    PUB | DOI
  • Gradient estimates of $\omega$-minimizers to double phase variational problems with variable exponents
    Byun SS, Lee HS (2021)
    Q. J. Math. 72(4): 1191–1221
    PUB | DOI
  • Lemniscate ensembles with spectral singularity
    Byun SS, Lee SY, Yang M (2021)
    arXiv:2107.07221.
    arXiv
  • Estimates on transition densities of subordinators with jumping density decaying in mixed polynomial orders
    Cho S, Kim P (2021)
    Stoch. Process. Appl. 139: 229–279
    arXiv | DOI
  • Low regularity solutions to the non-abelian Chern–Simons–Higgs system in the Lorenz gauge
    Cho Y, Hong S (2021)
    Nonlinear Differ. Equ. Appl. 28: Article No. 70, 25pp.
    DOI
  • Asymptotic analysis for a Vlasov–Fokker–Planck/Navier–Stokes system in a bounded domain
    Choi YP, Jung J (2021)
    Math. Models Methods Appl. Sci. 31(11): 2213–2295
    arXiv | DOI
  • Emergence of stochastic flocking for the discrete Cucker-Smale model with randomly switching topologies
    Dong JG, Ha SY, Jung J, Kim D (2021)
    Commun. Math. Sci. 19(1): 205–228
    arXiv | DOI
  • Rate of Convergence to the Circular Law via Smoothing Inequalities for Log-Potentials
    Götze F, Jalowy J (2021)
    Random Matrices Theory Appl. 10(3): Article No. 2150026, 25pp.
    arXiv | DOI
  • Collective stochastic dynamics of the Cucker–Smale ensemble under uncertain communications
    Ha SY, Jung J, Röckner M (2021)
    J. Differ. Equ. 284: 39–82
    arXiv | DOI
  • Capacities, removable sets and $L^p$-uniqueness on Wiener spaces
    Hinz M, Kang S (2021)
    Potential Anal. 54: 503–533
    arXiv | DOI
  • Rate of Convergence for products of independent non-Hermitian random matrices
    Jalowy J (2021)
    Electron. J. Probab. 26: 1–24
    arXiv | DOI
  • Low regularity well-posedness for generalized Benjamin–Ono equations on the circle
    Kim K, Schippa R (2021)
    J. Hyperbolic Differ. Equ. 18(4): 931–984
    arXiv | DOI
  • Generalized Evans–Krylov and Schauder type estimates for nonlocal fully nonlinear equations with rough kernels of variable orders
    Kim M, Lee KA (2021)
    J. Differ. Equ. 270: 883–915
    arXiv | DOI
  • Loomis–Whitney-type inequalities and low regularity well-posedness of the periodic Zakharov-Kuznetsov equation
    Kinoshita S, Schippa R (2021)
    J. Funct. Anal. 280(6): Article No. 108904, 53pp.
    arXiv | DOI
  • Effective Impedance over Ordered Fields
    Muranova A (2021)
    J. Math. Phys. 62(3): Article No. 033502pp.
    arXiv | DOI
  • Existence of flows for linear Fokker–Planck–Kolmogorov equations and its connection to well-posedness
    Rehmeier M (2021)
    J. Evol. Equ. 21: 17–31
    arXiv | DOI
  • Local well-posedness for the Zakharov system in dimension $d \leq 3$
    Sanwal A (2021)
    Discrete Contin. Dyn. Syst. 42(3): 1067–1103
    arXiv | DOI
  • The Tamed MHD Equations
    Schenke A (2021)
    J. Evol. Equ. 21: 969–1018
    arXiv | DOI
  • The Stochastic Tamed MHD Equations – Existence, Uniqueness and Invariant Measures
    Schenke A (2021)
    Stoch. Partial Differ. Equ. Anal. Comput. 10: 475–515
    arXiv | DOI
  • On a priori estimates and existence of periodic solutions to the modified Benjamin–Ono equation below $H^{1/2}(\mathbb{T})$
    Schippa R (2021)
    J. Differ. Equ. 299: 111–153
    arXiv | DOI