Universität Bielefeld SS 2017

LINEARE ALGEBRA II 9. PRÄSENZÜBUNGSBLATT

PROF. DR. HENNING KRAUSE DR. JULIA SAUTER

Aufgabe 1. Wir betrachten

$$A = \begin{pmatrix} 1 & 1 \\ -1 & 3 \end{pmatrix} \in \mathcal{M}_2(\mathbb{Q}).$$

Berechnen Sie p_A , Basen der Eigenräume zu allen Eigenwerten, das Minimalpolynom von A und die Jordansche Normalenform.

Aufgabe 2. Es sei $V = \mathbb{R}^n$ und $A = (a_{ij}) \in \mathcal{M}_n(\mathbb{R})$. Wir betrachten die Abbildung

$$\langle -, - \rangle_A \colon \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$$

 $\langle x, y \rangle_A = x^T A y.$

Wir sehen einfach, dass $\langle -, - \rangle_{E_n}$ das Standardskalarprodukt auf \mathbb{R}^n ist. Wir beobachten auch, dass dann gilt $\langle e_i, e_j \rangle_A = a_{ij}$ für alle $i, j \in \{1, \dots, n\}$.

- (a) Zeigen Sie, dass $\langle -, \rangle_A$ bilinear ist, das bedeutet $\langle x, \rangle_A \colon \mathbb{R}^n \to \mathbb{R}$ und $\langle -, y \rangle_A \colon \mathbb{R}^n \to \mathbb{R}$ sind lineare Abbildungen für alle $x, y \in \mathbb{R}^n$.
- (b) Zeigen Sie, dass die folgenden beiden Aussagen äquivalent sind
 - (i) $\langle x, y \rangle_A = \langle y, x \rangle_A$ für alle $x, y \in \mathbb{R}^n$, in diesem Fall nennen wir $\langle -, \rangle_A$ symmetrisch.
 - (ii) A ist symmetrisch.
- (c) Es sei nun $B \in \mathcal{M}_n(\mathbb{R})$ invertierbar und $A = B^T B$. Zeigen Sie, dass $\langle -, \rangle_A$ ein Skalarprodukt ist.

Aufgabe 3. Wir betrachten nun $A = B^T B$ mit

$$B = \begin{pmatrix} 2 & 1 \\ 0 & 1 \end{pmatrix} \in \mathcal{M}_2(\mathbb{R}),$$

so ist $\langle -, - \rangle_A$ ein Skalarprodukt auf \mathbb{R}^2 . Verifizieren Sie 1. die Cauchy-Schwarz'sche Ungleichung und 2. die Dreiecksungleichung (siehe Vorlesung) für die Vektoren $v=e_1-e_2, w=3e_2$ und das Skalarprodukt $\langle -, - \rangle = \langle -, - \rangle_A$. Zeigen Sie also durch konkrete Berechnung

- 1. $|\langle v, w \rangle| \le |v||w|$, 2. $|v + w| \le |v| + |w|$.
- **Aufgabe 4.** Es sei $(V, \langle -, \rangle)$ ein Vektorraum mit Skalarprodukt und $v, w \in V \setminus \{0\}$. Falls $\langle v, w \rangle = 0$ gilt, so sind v und w linear unabhängig.

1