Universität Bielefeld SS 2017

LINEARE ALGEBRA II 7. ÜBUNGSBLATT

HENNING KRAUSE JAN GEUENICH

Aufgabe 1. Seien A, B zwei $(n \times n)$ -Matrizen über einem Körper K. Man beweise $p_{AB} = p_{BA}$ und folgere, dass AB und BA dieselben Eigenwerte besitzen. Gilt auch $m_{AB} = m_{BA}$?

Hinweis: Man wähle invertierbare $(n \times n)$ -Matrizen S, T mit der Eigenschaft $SAT^{-1} = \begin{pmatrix} E_r & 0 \\ 0 & 0 \end{pmatrix}$ und schreibe $TBS^{-1} = \begin{pmatrix} P & Q \\ R & U \end{pmatrix}$, wobei P eine $(r \times r)$ -Matrix sei.

(4 Punkte)

Aufgabe 2. Seien V ein endlichdimensionaler Vektorraum und $f, g: V \to V$ lineare Abbildungen. Man beweise oder widerlege jede der folgenden Aussagen:

- (a) Sind f und g nilpotent, so ist auch $f \circ g$ nilpotent.
- (b) Sind f und g nilpotent, so ist auch f + g nilpotent.
- (c) Ist f nilpotent und f + q invertierbar, so ist q invertierbar.
- (d) Ist f nilpotent und g invertierbar und gilt $f \circ g = g \circ f$, so ist f + g invertierbar.
- (e) Ist f nilpotent, so gilt $f^{\dim V} = 0$.
- (f) Ist 0 der einzige Eigenwert von f, so ist f nilpotent.
- (g) Ist f nilpotent, so gilt det(f) = 0, Sp(f) = 0 und $p_f(\lambda) \neq 0$ für alle $\lambda \in K^{\times}$.
- (h) f ist genau dann nilpotent, wenn m_f in Linearfaktoren zerfällt und nur 0 als Nullstelle hat.

(je ein halber Punkt)

Aufgabe 3. Für nilpotente $(n \times n)$ -Matrizen A über dem Körper K heißt die $(n \times n)$ -Matrix

$$e^A := \sum_{k=0}^{\infty} \frac{1}{k!} A^k$$

das Exponential von A. Man weise folgende Eigenschaften für nilpotente $A, B \in \mathcal{M}_n(K)$ nach:

- (a) $e^{0_n} = E_n$ für die Nullmatrix $0_n \in \mathcal{M}_n(K)$.
- (b) $e^A e^B = e^{A+B}$ für Matrizen A, B mit der Eigenschaft AB = BA.
- (c) e^A und e^B sind ähnlich, falls die Matrizen A und B ähnlich sind.
- (d) e^A ist invertierbar mit $\det(e^A) = 1$ und $(e^A)^{-1} = e^{-A}$.

(je 1 Punkt)

Aufgabe 4. Sei V ein endlichdimensionaler Vektorraum und $f:V\to V$ eine lineare Abbildung. Besitzt jeder f-invariante Unterraum von V ein f-invariantes Komplement in V, so wird f halbeinfach genannt. Man beweise die folgenden Aussagen:

- (a) f ist halbeinfach, wenn f diagonalisierbar ist.
- (b) f ist diagonalisierbar, wenn f halbeinfach ist und p_f in Linearfaktoren zerfällt.

(je 2 Punkte)