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1.

(a) Pick a well-order < on Z =
⊔
|µ|=µ<κ P(µ ∗ µ) and consider theM-class function

f : Hκ → @−−1(Z) that mapsM-sets X ∈ Hκ to the <-minimal ≺ @− P(|X∞| ∗ |X∞|)
such that there exists an isomorphism 〈|X∞|,≺〉_ 〈X∞,@−〉, which is then uniquely
determined by Theorem 2.5.9. Because X is well-founded, X can be recovered as
the @−-maximal element of X∞. This shows that f is injective and so Hκ forms an
M-set Hκ of cardinality |Hκ| ≤ |Z| ≤ 2<κ, where the last inequality holds since
|P(µ ∗ µ)| = 2|µ∗µ| = 2µ ≤ 2<κ for allM-cardinals ω ≤ µ < κ and κ ≤ 2<κ by 3. (a).

Conversely, 2<κ ≤ |Hκ| because of 2µ = |P(µ)| ≤ |Hκ| for everyM-cardinal µ < κ,
since for each X @− P(µ) we have X∞ v µ∞, so |X∞| ≤ |µ∞| = µ < κ, so X @− Hκ.

(b) We prove |Wω+β| = iβ for β ∈ O. By induction assume |Wω+α| = iα for α < β.

If β is a successor, then |Wω+β| = |P(Wω+β−1)| = 2|Wω+β−1| = 2iβ−1 = iβ.
If β is a limit > 0, then Wω+α v Wω+β for α < β, so iα = |Wω+α| ≤ |Wω+β| and

iβ ≤ |Wω+β| =
∣∣⊔

α<βWω+α

∣∣ ≤ max
[
β,
⊔
α<β |Wω+α|

]
= max

[
β,iβ

]
= iβ .

Finally, |Wω+0| = ω = i0 because of ω v Wω and |Wα| < ω for all α < ω.

It is thus enough to check ω + κ = κ forM-cardinals κ > ω. But for all γ < κ it is
|ω+ γ| = ω⊕ |γ| ≤ max [ω, γ] < κ, so ω+ γ < κ and κ ≤ ω+κ =

⊔
γ<κ(ω+ γ) ≤ κ.

(c) To prove the inclusion let Y ∈ Hκ. We know [rk(X) : X @− Y ∞] = rk(Y )+1 from
2. (b) on Problem Set 5, so |rk(Y )| = |rk(Y ) + 1| ≤ |Y ∞| < κ, so indeed rk(Y ) < κ.

Assume now κ = iκ and let Y ∈Wκ. Because κ is a limit ordinal greater than ω we
have Y ∈Wω+α for someM-ordinal α with ω+α < κ. But then we get Y ∞ v Wω+α

and therefore |Y ∞| ≤ |Wω+α| = iα < iκ = κ, which means that Y ∈ Hκ.

Assume now that Hκ =Wκ. Then for every α < κ it is also ω+α+1 < κ such that
Wω+α @− Wω+α+1 v Wκ = Hκ, so iα = |Wω+α| ≤ |W∞

ω+α| < κ, so iκ =
⊔
α<κ iα ≤ κ.

The inequality κ ≤ iκ holds anyway because i is normal.

(d,e) We will apply the lemma stated in the solution of Exercise 3 on Problem Set 5.

Either T ∈ {Hκ,Wκ} is a transitiveM-class with T ⊆W and ��,
⊔
X,ZuX ∈ T for

all X, Y ∈ T andM-sets Z. Furthermore, [X, Y ] ∈ T because κ is a limit ordinal
and ω ∈ T because of κ > ω. Hence,M|T � EXT∪EMP∪PAI∪UNI∪INF∪CHO∪REG.

(d) It remains to checkM|Hκ � REP. For this, it is sufficient to show that f [X] ∈ Hκ

for each partialM-class function f : @−−1(X)9 Hκ with X ∈ Hκ. Choose a bijective
g : λ = |f [X]|_ f [X] and set µγ = |g(γ)∞|. Then λ < κ and µγ < κ for all γ < λ.
Using the fact that f [X]∞ = [f [X]] t

⊔
Y@−f [X] Y

∞ we conclude f [X] ∈ Hκ from

|f [X]∞| ≤ 1⊕
⊕

γ<λ µγ < κ ,

where the strict inequality is due to λ < κ = cof(κ) and Theorem 2.10.24.

(e) It only remains to checkM|Wκ � POW. This follows from P(X)uWκ = P(X) ∈Wκ

for all X ∈Wκ, which holds because κ is a limit ordinal.
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2.

(a) We frequently use below that κ as an infiniteM-cardinal is a limitM-ordinal.

(1) ⇒ (2) For allM-cardinals µ, λ < κ use that µλ ≤ (2µ)λ = 2µ⊗λ = max
[
2µ, 2λ

]
by Lemma 2.10.9 and Theorem 2.10.7.

(2) ⇒ (1) and (4) ⇒ (3) are clear.

(3) ⇔ (5) holds by 1. (c).

(1)⇒ (3) Because i is normal and κ is a limit ordinal, we have κ ≤ iκ =
⊔
α<κ iα.

It thus is sufficient to prove iα < κ for all α < κ.

Firstly, i0 = ω < κ by assumption. Secondly, if α is a successor and we inductively
assume iα−1 < κ, then iα = 2iα−1 < κ by (1). Thirdly, if α is a non-zero limit and
by induction iγ < κ for all γ < α, then iα =

⊔
γ<α iγ < κ because α < κ = cof(κ).

(3)⇒ (4) Assuming we know κ = f(κ) for f = i(n) and some n ∈ N, then κ = f ′(α)
for some M-ordinal α. Now α ≤ κ because f ′ is normal. If α were a successor
ordinal, then κ = fω(f ′(α− 1)+1) would lead to the contradiction κ = cof(κ) ≤ ω.
So α is a limit ordinal. We then have κ =

⊔
f ′[α] and thus also κ = cof(κ) ≤ α.

(5) ⇒ (6) If Hκ =Wκ, then Wκ is a Grothendieck universe because Wκ clearly is a
transitiveM-class and by (the proof of) 1. (d,e)M|Wκ is a ZFC-universe with

[X, Y ]M|Wκ = [X, Y ] and PM|Wκ (X) = P(X) and
⊔M|Wκ
i@−I Xi =

⊔
i@−I Xi

for allM-sets X, Y ∈Wκ and families 〈Xi〉i@−I ofM-sets in Wκ with I ∈Wκ.

(6) ⇒ (1) For λ < κ we have λ ∈Wκ, so P(λ) ∈Wκ by (iii). Because of 2λ = |P(λ)|
and O ∩Wκ = O<κ it suffices to prove the following lemma:

Lemma. IfWκ is a Grothendieck universe inM, then |X| ∈Wκ for every X ∈Wκ.

Proof. Assume there is some X ∈Wκ with |X| 6∈Wκ. Then we must have κ ≤ |X|.
Choose any bijective f : X _ |X| and let g : |X| _ Wκ be given by g|κ = idκ and
g(α) = 0 for all κ ≤ α < |X|. Using (iv) in the last step, we get the contradiction

κ =
⊔
κ =

⊔
|X| u κ =

⊔
f [X] u κ =

⊔
(g ◦ f)[X] ∈ Wκ . �

(b) By Theorem 2.7.4 we can assume thatM is a ZFC-universe.

If M has no inaccessible cardinals, we are done. Otherwise, let κ be the smallest
inaccessibleM-cardinal. By (a) and 1. (d,e)M|Wκ is a ZFC-universe where Wκ is
a Grothendieck universe inM. It is clearly enough to show that KM|Wκ = K ∩Wκ

and that moreover anM|Wκ-cardinal is inaccessible if and only if it is inaccessible
as anM-cardinal. Now (ii,iii,iv) imply [X _ Y ]M|Wκ = [X _ Y ] for all X, Y ∈Wκ

and together with the lemma proved in (a) we obtain KM|Wκ = K ∩Wκ as desired.
But this also shows that the λ-th power of 2 computed inM|Wκ simply is∣∣[λ _ 2]M|Wκ

∣∣M|Wκ =
∣∣[λ _ 2]

∣∣ = 2λ .

Hence, using the characterization (1) from (a), the inaccessibleM|Wκ-cardinals are
nothing but the inaccessibleM-cardinals that lie in Wκ. Because of KM|Wκ = K<κ

and the minimal choice of κ we can conclude thatM|Wκ has no inaccessible cardinals.
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3.

(a) In case κ = λ+ we have κ = λ+ ≤ 2λ = 2<κ and in case κ is a limit cardinal
κ =

⊔
|µ|=µ<κ µ ≤ 2<κ in view of Lemma 2.10.9. The other inequality is obvious.

To prove the equality let λ = cof(κ). Then by Theorem 2.10.24 there exists a family
〈µγ〉γ<λ ofM-cardinals with µγ < κ for all γ < λ and κ =

⊕
γ<λ µγ. We compute

2κ =
⊗

γ<λ 2
µγ ≤

⊗
γ<λ 2

<κ = (2<κ)λ ≤ (2κ)λ = 2κ⊗λ = 2κ .

(b) 2 ≤ κ ≤ 2λ for infinite κ = λ+ by Lemma 2.10.9 and so 2<κ = 2λ = κλ = κ<κ

according to Theorem 2.10.7.

(c) For⇒ assume 2µ = µ+ for all infinite |µ| = µ < κ to see 2<κ =
⊔
|µ|=µ<κ µ

+ = κ.
For ⇐ note that 2κ = 2<κ

+ and use the assumption 2<κ
+
= κ+.

(d) Using (a) in the first step and cof(κ) < κ in the last step we compute

2κ = (2<κ)cof(κ) ≤ (2λ)cof(κ) = 2λ⊗cof(κ) = max
[
2λ, 2cof(κ)

]
= 2λ .

4. Finding a sequence 〈Uγ〉γ<κ+ ofM-functions κ _ κ such that for all γ, γ′ < κ+

there is some ε < κ with Uγ,γ′ = [τ < κ : Uγ(τ) = Uγ′(τ)] v ε will prove the exercise.

Indeed, taking X ′ = [Uγ : γ < κ+] we then have |X ′| = κ+, since the Uγ are pairwise
distinct, and of course for all functions U, V : κ _ κ with [τ < κ : U(τ) = V (τ)] v ε
for some ε < κ we have |U | = |V | = κ and |U u V | ≤ ε < κ. Choosing a bijective
M-function f : κ ∗ κ _ κ we can finally take X = [f [Uγ] : γ < κ+].

Let’s now turn to the construction of the sequence 〈Uγ〉γ<κ+ .
Before we begin with the work, we use Choice for the existence of a family 〈fδ〉δ<κ+
of surjective fδ : κ _ δ and for the existence of a well-order ≺ on [κ _ κ].

Recursively, assume that 〈Uγ〉γ<δ is given for some δ < κ+ such that for all γ, γ′ < δ
there is some ε < κ with Uγ,γ′ v ε. Define Uδ to be the ≺-least element in theM-set∗τ<κ(κr [Ufδ(σ)(τ) : σ < τ ]), which is non-empty since

∣∣[Ufδ(σ)(τ) : σ < τ ]
∣∣ ≤ τ < κ

for all τ < κ and thanks to Choice. To conclude, it merely remains to observe that
for all γ < δ we have Uγ,δ v σ + 1 for any σ < κ with fδ(σ) = γ.
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