Logic and Set Theory Universitéat Bielefeld
Solutions 6 SS 2019

1.

(a) Pick a well-order < on Z = | |,_,_, P(1 * p) and consider the M-class function
f:H, — e 1(Z) that maps M-sets X € H, to the <-minimal < £ P(|X | x | X*|)
such that there exists an isomorphism (| X[, <) — (X>° &), which is then uniquely
determined by Theorem 2.5.9. Because X is well-founded, X can be recovered as
the E-maximal element of X°°. This shows that f is injective and so H,, forms an
M-set H, of cardinality |H,| < |Z] < 2<%, where the last inequality holds since
IP(p )| = 24l = 21 < 2<% for all M-cardinals w < pu < k and k£ < 2<% by 3. (a).

Conversely, 2<% < |H,| because of 2* = |P(u)| < |H,| for every M-cardinal u < &,

since for each X £ P(u) we have X C p*, so | X*®| < |pu®| = p < k,s0 X € H,.

(b) We prove |W,1 5| = 3s for 8 € Q. By induction assume |W,, .| = 3, for a < f.

If 3 is a successor, then |W, 4| = [P(Woys_1)| = 2Wers-2l = 231 = Ty,

If 5 is a limit > 0, then W14 C W,,4p for a < 3, 80 3y = [Wiyta| < [Weip| and
:,8 < ‘Wer,B‘ = “_'a<5 Ww+a| < max [ﬁ> |—|a<ﬁ ‘WeraH = max [5a:ﬁ} = 3,8-

Finally, |W,40| = w = Jy because of w C W, and |V, | < w for all a < w.

It is thus enough to check w + k = K for M-cardinals x > w. But for all v < k it is
lw+7y =wd |y <max|w,7] <K, sow+y<kand k <w—+kK = |_|7<N(w+’y) < k.

(c) To prove the inclusion let Y € H,. We know [rk(X) : X £ Y] = 1k(Y) +1 from
2. (b) on Problem Set 5, so |tk(Y)| = [rk(Y) + 1] < |Y*°| < K, so indeed rk(Y) < k.
Assume now x = J,; and let Y € W,.. Because « is a limit ordinal greater than w we

have Y € W, for some M-ordinal o with w+a < k. But then we get Y C W,
and therefore |Y*°| < |W,,4| = 34 < 3. = Kk, which means that Y € H,,.

Assume now that H, = W,. Then for every o < k it is also w4+ a+ 1 < k such that
Wata E Wogar1 C Wi = H,, 50 3o = [Wopa| < WS4 < K,50 3 =, e, 30 < K.
The inequality x < 3, holds anyway because 3 is normal.

a<k

(d,e) We will apply the lemma stated in the solution of Exercise 3 on Problem Set 5.

Either T' € {H,,, W,} is a transitive M-class with 7" C W and i7,| | X, ZMX € T for
all X,Y € T and M-sets Z. Furthermore, [X,Y] € T because x is a limit ordinal
and w € T because of K > w. Hence, M|y F EXTUEMPUPATI UUNIU INFUCHOUREG.

(d) It remains to check M|y, F REP. For this, it is sufficient to show that f[X] € H,
for each partial M-class function f: e~1(X) - H, with X € H,. Choose a bijective
g: A= |f[X]| = f[X] and set p, = |g(7)>°|. Then A < x and p, < & for all v < A.
Using the fact that f[X]* = [f[X]]U |y Y™ we conclude f[X] € H, from

FIX]*l < 1e@,an <k,
where the strict inequality is due to A < k = cof(x) and Theorem 2.10.24.

(e) It only remains to check M|w, F POW. This follows from P(X )W, =P(X) € W,
for all X € W,,, which holds because « is a limit ordinal.
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2.

(a) We frequently use below that x as an infinite M-cardinal is a limit M-ordinal.

(1) = (2) For all M-cardinals p, A < k use that p* < (2#)* = 2¢®* = max [2#,2"]
by Lemma 2.10.9 and Theorem 2.10.7.

(2) = (1) and (4) = (3) are clear.
(3) & (5) holds by 1. (c).

(1) = (3) Because 3 is normal and & is a limit ordinal, we have x < 3, = ||, ., Ja-
It thus is sufficient to prove 3, < k for all a < k.

Firstly, 3y = w < k by assumption. Secondly, if « is a successor and we inductively
assume J,_; < K, then J, = 2721 < x by (1). Thirdly, if a is a non-zero limit and
by induction 3, <  for all v < a, then 3, = | |, _, 3, < K because a < r = cof(k).

(3) = (4) Assuming we know s = f(k) for f = 2 and some n € N, then x = f'(«)
for some M-ordinal o. Now o < k because f’ is normal. If o were a successor
ordinal, then k = f“(f'(ov — 1) +1) would lead to the contradiction k = cof (k) < w.
So « is a limit ordinal. We then have k = | | f'[e] and thus also k = cof(k) < a.

(5) = (6) If H,, = W,, then W, is a Grothendieck universe because W, clearly is a
transitive M-class and by (the proof of) 1. (d,e) M|y, is a ZFC-universe with

(X, Y[Mwe = [X,Y] and PMPx(X) = P(X) and | V21" X; = | ., X
for all M-sets X,Y € W,, and families (X;);=; of M-sets in W, with I € W,,.

(6) = (1) For A < k we have A € W, so P(\) € W, by (iii). Because of 2* = |P())|
and O NW, = O, it suffices to prove the following lemma:

Lemma. If W, is a Grothendieck universe in M, then | X| € W, for every X € W,.

Proof. Assume there is some X € W, with |X| ¢ W,. Then we must have x < |X|.
Choose any bijective f: X — |X| and let g: | X| — W, be given by g¢|, = id, and
g(a) =0 for all kK < a < |X]|. Using (iv) in the last step, we get the contradiction

= Ure =UIXINe = HFIX]NR = [(go IX] € W, 0

(b) By Theorem 2.7.4 we can assume that M is a ZFC-universe.

If M has no inaccessible cardinals, we are done. Otherwise, let x be the smallest
inaccessible M-cardinal. By (a) and 1. (d,e) M|w, is a ZFC-universe where W, is
a Grothendieck universe in M. It is clearly enough to show that KMw. = K NW,
and that moreover an M|y, -cardinal is inaccessible if and only if it is inaccessible
as an M-cardinal. Now (ii,iii,iv) imply [X — Y]M"s = [X — Y] for all X,Y € W,
and together with the lemma proved in (a) we obtain KMw. = K N W, as desired.
But this also shows that the A-th power of 2 computed in M|y, simply is

A = MM |3 = 2]] = 2%,

Hence, using the characterization (1) from (a), the inaccessible M|y, -cardinals are
nothing but the inaccessible M-cardinals that lie in W,. Because of KM = K_,
and the minimal choice of k£ we can conclude that M |y, has no inaccessible cardinals.



3.

(a) In case kK = AT we have k = AT < 2 = 2<% and in case  is a limit cardinal
K = I—l\u\:u@i p < 2<% in view of Lemma 2.10.9. The other inequality is obvious.

To prove the equality let A = cof(x). Then by Theorem 2.10.24 there exists a family
(ty)y<x of M-cardinals with p, < r for all v < X and k = P, t,- We compute

2= @027 < ®,n2% = %) < @) =2 =2

(b) 2 < k < 2* for infinite kK = A* by Lemma 2.10.9 and so 2<% = 2} = x* = k<~
according to Theorem 2.10.7.

(c) For = assume 2* = p* for all infinite |u| = p < K to see 2<% = [ pt=k.

For < note that 2° = 2<%" and use the assumption 2<% = k.

(d) Using (a) in the first step and cof(k) < k in the last step we compute
2;{ — (2<H)cof(n) < (Zk)cof(n) — 2)\®Cof(n) — max [2)\7200f(n)} — 2)\'

4. Finding a sequence (U,),<,+ of M-functions k — & such that for all v,7" < k™
there is some ¢ < k with U, v = [T < k : U,(7) = U,/(7)] C € will prove the exercise.

Indeed, taking X’ = [U, : v < x*] we then have | X'| = k™, since the U, are pairwise
distinct, and of course for all functions U, V: k — k with [t <k : U(7) = V(1) C ¢
for some € < k we have |U| = |V| = k and |[U M V| < e < k. Choosing a bijective
M-function f: k% Kk — k we can finally take X = [f[U,] : v < k7.

Let’s now turn to the construction of the sequence (U, ). <+

Before we begin with the work, we use CHOICE for the existence of a family (fs)s<+
of surjective f5: k — 0 and for the existence of a well-order < on [k — K.

Recursively, assume that (U,),<s is given for some 6 < % such that for all 7,7 < §
there is some € < k with U, ,» € e. Define Us to be the <-least element in the M-set
X, n (5N [Upy0)(7) : 0 < 7]), which is non-empty since |[Up, (1) : 0 < 7]| <7 < &
for all 7 < k and thanks to CHOICE. To conclude, it merely remains to observe that
for all v < 0 we have U, 5 C o + 1 for any o < k with f5(0) = 1.



