REPRESENTATION THEORY EXERCISES 11

HENNING KRAUSE JAN GEUENICH

1. Let Λ be a ring with Jacobson radical J and set $\overline{\Lambda} = \Lambda/J$. Prove the following:

- (a) $P \mapsto P/PJ$ for $P \in \operatorname{proj} \Lambda$ induces a monomorphism $K_0(\Lambda) \xrightarrow{\iota} K_0(\overline{\Lambda})$ of abelian groups.
- (b) If Λ is semiperfect, then ι is an isomorphism and the Grothendieck group $K_0(\Lambda)$ is a finitely generated free abelian group.

2. For exact categories \mathcal{A} denote by tilt \mathcal{A} the poset of equivalence classes of tilting objects in \mathcal{A} .

Let k be a field and let Q and Q' be two finite acyclic quivers whose underlying graphs coincide. Prove that there exists a bijection

tilt mod $kQ \xrightarrow{\simeq}$ tilt mod kQ'.

Give an explicit description how the structures of these two posets are related to each other in the case that the quiver Q' is obtained from Q by changing the orientation of all arrows at a sink.

Illustrate this description pictorially for a linearly oriented quiver Q of type A_n .

3. Nagata's famous example of a commutative noetherian ring R of infinite Krull dimension arises from the following construction:

- (i) Fix a field k and a strictly increasing sequence $d \colon \mathbb{N} \to \mathbb{N}$.
- (ii) Take for R the localization of $k[x_0, x_1, x_2, ...]$ at the complement of the union of the infinite set of prime ideals $(x_0, ..., x_{d_0})$, $(x_{d_0+1}, ..., x_{d_1})$, $(x_{d_1+1}, ..., x_{d_2})$,

Verify the two statements below:

- (a) R is noetherian.
- (b) R has Krull dimension dim $R = \sup\{d_{n+1} d_n : n \in \mathbb{N}\}.$

In particular, dim R is infinite whenever the differences $d_{n+1} - d_n$ are unbounded.

Recall that for right coherent rings Λ the *little* and the *big finitistic dimension* are defined as

fin. dim $\Lambda = \{ \operatorname{proj. dim} M : M \in \operatorname{mod} \Lambda \text{ with } \operatorname{proj. dim} M < \infty \},\$

Fin. dim $\Lambda = \{ \operatorname{proj. dim} M : M \in \operatorname{Mod} \Lambda \text{ with } \operatorname{proj. dim} M < \infty \}.$

Conclude that for commutative noetherian rings R the following observations are true:

- (c) fin. dim R is not finite in general.
- (d) fin. dim R is finite if R is assumed to be local.
- (e) The inequality fin. dim $R \leq$ Fin. dim R may be strict even for local R.

Hint for (d) and (e): Use the identity Fin. dim $R = \dim R$ and the Auslander–Buchsbaum formula. Finally, consult the literature to find an example for the next statement:

(f) The inequality fin. dim $\Lambda \leq \text{Fin. dim } \Lambda$ can be strict even for finite-dimensional algebras Λ .

To be handed in via email by July 6, 2020, 2 p.m.