
REPRESENTATION THEORY EXERCISES 6

HENNING KRAUSE JAN GEUENICH

1. Let \mathcal{A} be an abelian category with exact countable coproducts and with enough projectives. Convince yourself of the correctness of the facts below, partly dual to results from the lecture:

- (a) The inclusion $\mathbf{K}_{\text{proj}}(\mathcal{A}) \to \mathbf{K}(\mathcal{A})$ admits a right adjoint \mathbf{p} with image in $\mathbf{K}(\text{Proj }\mathcal{A})$.
- (b) For each $X \in \mathbf{K}(\mathcal{A})$ the cone of the counit map $\mathbf{p}X \to X$ of this adjunction is acyclic.
- (c) We have the following commutative diagram of functors:

Apart from κ and p all the arrows are the canonical functors. The left and the upper triangle commute up to natural isomorphism and the rest of the diagram commutes on the nose.

(d) If \mathcal{A} has finite projective dimension, then κ is an equivalence.

Conclude that for every ring Λ of finite global dimension there are exact equivalences:

 $\mathbf{K}(\operatorname{Inj}\Lambda) \cong \mathbf{D}(\operatorname{Mod}\Lambda) \cong \mathbf{K}(\operatorname{Proj}\Lambda)$

- 2. (a) Find an example of a (necessarily non-commutative) noetherian ring Λ and a Serre subcategory \mathcal{C} of mod Λ such that the induced functor $\mathbf{D}^{b}(\mathcal{C}) \to \mathbf{D}^{b}(\text{mod }\Lambda)$ is not fully faithful.
 - (b) Let Λ be a right coherent ring. Prove that the canonical functor $\mathbf{D}^{b}(\operatorname{mod} \Lambda) \to \mathbf{D}^{b}(\operatorname{Mod} \Lambda)$ is fully faithful with essential image formed by those X with $H^{n}X \in \operatorname{mod} \Lambda$ for all $n \in \mathbb{N}$.

3. Let Λ be a quasi-hereditary ring with heredity chain $\Lambda = \Lambda_n \to \Lambda_{n-1} \to \cdots \to \Lambda_1 \to \Lambda_0 = 0$. Recall that this means that Λ is semiprimary and that the kernels of $\Lambda_i \to \Lambda_{i-1}$ are heredity ideals.

Recall or verify that $\Lambda_i \to \Lambda_{i-1}$ are homological epimorphisms and conclude that they give rise to recollements of triangulated categories

$$\mathbf{D}^{b}(\operatorname{Mod}\Lambda_{i-1}) \xrightarrow{\not\leftarrow} \mathbf{D}^{b}(\operatorname{Mod}\Lambda_{i}) \xleftarrow{\not\leftarrow} \mathcal{T}_{i}$$

Prove that the triangulated categories T_i are abelian.

To be handed in via email by June 1, 2020 (Whit Monday), 2 p.m.