REPRESENTATION THEORY EXERCISES 7

HENNING KRAUSE JAN GEUENICH

1. Let k be a field and let Q and Q' be two finite acyclic quivers whose underlying graphs coincide. Prove that there exists an equivalence of triangulated categories:

 $\mathbf{D}^b(\mathrm{mod}\,kQ) \simeq \mathbf{D}^b(\mathrm{mod}\,kQ')$

Hint: Let Λ be an artin algebra and let e_1, \ldots, e_n be a complete set of representatives of local idempotents of Λ up to isomorphism. If $S = e_i \Lambda$ is a simple projective non-injective Λ -module, then $T_S = \tau^{-1}S \oplus \bigoplus_{i \neq i} e_j \Lambda$ is a tilting object in Thick (Λ_{Λ}) .

Remark: The algebra $\operatorname{End}_{\Lambda}(T_S)$ is known as the *APR* (*Auslander–Platzeck–Reiten*) tilt of Λ at S.

- **2.** Verify the following facts about abelian categories A:
 - (a) \mathcal{A} is hereditary iff for every morphism f in \mathcal{A} there is an exact sequence in \mathcal{A} of the form

$$0 \longrightarrow X \xrightarrow{\begin{pmatrix} \alpha \\ \beta \end{pmatrix}} \operatorname{Im} f \oplus Z \xrightarrow{(\gamma \ \delta)} Y \longrightarrow 0$$

such that $\gamma \alpha = f$ where α is an epimorphism and γ is a monomorphism.

Assume from now on that \mathcal{A} is hereditary and linear over some commutative ring k such that the k-modules $\operatorname{Hom}_{\mathcal{A}}(X,Y)$ and $\operatorname{Ext}_{\mathcal{A}}(X,Y)$ have finite length for all objects $X, Y \in \mathcal{A}$.

- (b) If $X, Y \in \mathcal{A}$ are indecomposable with $\operatorname{Ext}^{1}_{\mathcal{A}}(Y, X) = 0$, then every nonzero map $X \to Y$ in \mathcal{A} is either a monomorphism or an epimorphism.
- (c) For every tilting object T in A the *tilted algebra* $\operatorname{End}_{\mathcal{A}}(T)$ has global dimension at most 2.

3. Let k be a field. Prove that the canonical embedding of k[x] into its field of fractions k(x) induces an equivalence of categories

$$\frac{\operatorname{mod} k[x]}{\operatorname{mod}_0 k[x]} \xrightarrow{\sim} \operatorname{mod} k(x)$$

where $\operatorname{mod}_0 k[x]$ denotes the Serre subcategory of $\operatorname{mod} k[x]$ consisting of all torsion modules. How can this be regarded as an affine analog of Serre's theorem about coherent sheaves on \mathbb{P}_k^1 ?

To be handed in via email by June 8, 2020, 2 p.m.