REPRESENTATION THEORY EXERCISES 9

HENNING KRAUSE JAN GEUENICH

1. Prove the following:

(a) Let k be a field and let Γ and Λ be non-zero finite-dimensional Gorenstein k-algebras. Then the tensor product $\Gamma \otimes_k \Lambda$ is Gorenstein with

Gor. dim $\Gamma \otimes_k \Lambda = \text{Gor. dim } \Gamma + \text{Gor. dim } \Lambda$.

(b) Let Λ be a Gorenstein ring and let M be a Λ -bimodule such that M_{Λ} and $_{\Lambda}M$ are projective and the tensor algebra $\Gamma = T_{\Lambda}M$ is noetherian. Then Γ is Gorenstein with

 $\operatorname{Gor.\,dim}\Lambda\ \le\ \operatorname{Gor.\,dim}\Gamma\ \le\ \operatorname{Gor.\,dim}\Lambda+1\,.$

2. (a) Let $\Lambda = \mathbb{Z}G$ for a finite group G. Prove that Λ is Gorenstein of dimension 1 with

 $\operatorname{Gproj} \Lambda = \operatorname{mod} \Lambda \cap \operatorname{Gproj} \mathbb{Z} = \operatorname{mod} \Lambda \cap \operatorname{proj} \mathbb{Z}.$

(b) Let $\Lambda = k(\varepsilon \rightleftharpoons \bullet \longrightarrow \bullet)/(\varepsilon^2)$ where k is a field. Prove that Λ is Gorenstein, determine its Gorenstein dimension and find all Gorenstein projective modules in mod Λ .

3. Let Λ be a Gorenstein ring. We wish to investigate the idempotent completeness of the singularity category $\mathbf{D}_{sg}(\Lambda)$ in certain situations.

We begin with a negative example given in Auslander's article "Comments on the Functor Ext" after Proposition 2.8. It is also discussed in Hartshorne's "Coherent Functors" as Example 5.5.

Considering $\Lambda = R_{(x,y)}$ where $R = \mathbb{C}[x,y]/(x^2 - y^2(y+1))$, we make the following observations:

- (a) Λ is a complete intersection ring, so it is in particular Gorenstein.
- (b) Λ is an integral domain with non-local integral closure Γ .
- (c) Γ is a finitely generated Gorenstein projective Λ -module.
- (d) Γ has no proper direct summands as a Λ -module
- (e) $\widehat{\Gamma}$ has (two) proper direct summands as a $\widehat{\Lambda}$ -module.
- (f) $\underline{\operatorname{End}}_{\Lambda}(\Gamma)$ has (two) proper idempotents.
- (g) $\operatorname{Ext}^{1}_{\Lambda}(\Gamma, -)$ has (two) proper direct summands that do not belong to $\operatorname{Ext}^{1}_{\Lambda}(\operatorname{mod} \Lambda, -)$.
- (h) $M \mapsto \operatorname{Ext}^1_{\Lambda}(M, -)$ yields a fully faithful functor from $\operatorname{\underline{mod}} \Lambda$.
- (i) The stable category $\operatorname{Gproj} \Lambda$ is not idempotent complete.
- (j) The singularity category $\mathbf{D}_{sg}(\Lambda)$ is not idempotent complete.

This finishes the negative example.

On the positive side prove now that $\mathbf{D}_{sg}(\Lambda)$ is idempotent complete for every artin algebra Λ .

To be handed in via email by June 22, 2020, 2 p.m.