Aufgabe 1 (4 Punkte):

Sei G eine Gruppe mit einem Normalteiler N und einer Untergruppe H.

		Wahr	Falsch
(a)	Ist G abelsch und endlich erzeugt, so ist		
	auch G/N endlich erzeugt.	\boxtimes	
(b)	Hat G außer H keine weitere Untergruppe der		
	Ordnung $ H < \infty$, so ist H ein Normalteiler in G.	\boxtimes	
(d)	Hat G keine nichttriviale echte Untergruppe,		
	so ist G endlich.	\boxtimes	
(c)	Ist G einfach, so ist H einfach oder trivial.		\boxtimes

Begründungen:

- (a) Sind g_1, \ldots, g_n Erzeuger von G, so wird G/N von g_1N, \ldots, g_nN erzeugt.
- (b) Für jedes $g \in G$ ist gHg^{-1} eine Untergruppe von G der Ordnung |H| und stimmt deshalb nach Voraussetzung mit H überein. Folglich ist H ein Normalteiler.
- (c) Angenommen $|G| = \infty$. Wähle $x \in G \setminus \{1\}$. Nach Voraussetzung ist dann $\langle x \rangle = G$, also $G \cong \mathbb{Z}$, im Widerspruch dazu, dass \mathbb{Z} nichttriviale echte Untergruppen besitzt.
- (d) Die alternierende Gruppe $G=A_5$ hat nach Satz 1.12.1 wegen $|A_5|=\frac{5!}{2}=2^2\cdot 15$ eine Untergruppe H mit $|H|=2^2$. Aber Gruppen der Ordnung 2^2 sind nie einfach.

Aufgabe 2 (4 Punkte):

Sei L/K eine Körpererweiterung und seien $\alpha, \beta \in L \setminus K$ algebraisch über K.

		Wahr	Falsch
(a)	Ist L ein Zerfällungskörper von $Irr(\alpha, K)$,		
	so zerfällt $Irr(\beta, K)$ in $L[X]$ in Linearfaktoren.	\boxtimes	
(b)	Es gilt $[K(\alpha + \beta) : K] \leq [K(\alpha) : K] \cdot [K(\beta) : K]$.	\boxtimes	
(c)	Es gilt $\frac{1}{42}[K(\alpha):K] \le [K(\alpha^{42}):K]$.	\boxtimes	
(d)	Sind α und β separabel über K , so ist		
	auch $\alpha^2 + \beta^{-1}$ separabel über K .	\boxtimes	

Begründungen:

- (a) Nach Satz 3.5.11 ist L/K normal, sodass das Polynom $Irr(\beta, K) \in K[X]$, welches die Nullstelle $\beta \in L$ besitzt, in L[X] in Linearfaktoren zerfällt.
- (b) Zunächst gilt $[K(\alpha + \beta) : K] \leq [K(\alpha, \beta) : K]$ und $[K(\alpha, \beta) : K(\beta)] \leq [K(\alpha) : K]$ wegen $K(\alpha + \beta) \subseteq K(\alpha, \beta)$ und $Irr(\alpha, K(\beta)) \mid Irr(\alpha, K)$. Hieraus ergibt sich die Behauptung mit der Gradformel $[K(\alpha, \beta) : K] = [K(\alpha, \beta) : K(\beta)] \cdot [K(\beta) : K]$.
- (c) Das Minimalpolynom von α über $K(\alpha^{42})$ teilt $X^{42} \alpha^{42}$, sodass mit der Gradformel $[K(\alpha):K] = [K(\alpha):K(\alpha^{42})] \cdot [K(\alpha^{42}):K] \leq 42 \cdot [K(\alpha^{42}):K]$ folgt.
- (d) Nach Satz 3.6.12 ist die Körpererweiterung $K(\alpha,\beta)/K$ separabel. Insbesondere ist das Element $\alpha^2 + \beta^{-1} \in K(\alpha,\beta)$ separabel über K.

Aufgabe 3 (3 + 3 + 4) Punkte:

Sei
$$X = \mathbb{Z}^3 \setminus \{0\}$$
 und $G = \{\begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix} \in \mathrm{SL}_2(\mathbb{Q}) \mid n \in 2\mathbb{Z} \}.$

- (a) Man zeige, dass G eine Untergruppe von $SL_2(\mathbb{Q})$ ist.
- (b) Man zeige, dass die Vorschrift

$$((\begin{smallmatrix} 1 & n \\ 0 & 1 \end{smallmatrix}), (a, b, c)) \mapsto (a, b + 2an, an^2 + bn + c)$$

eine Gruppenoperation $G \times X \to X$ liefert.

(c) Man bestimme für $x = (0, 2, 3) \in X$ die Bahn Gx und die Standgruppe G_x .

Lösung:

(a) Sicher liegt $E = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ in G. Mit $A = \begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix} \in G$ ist wegen $-n \in 2\mathbb{Z}$ auch

$$A^{-1} = \begin{pmatrix} 1 & -n \\ 0 & 1 \end{pmatrix} \in G$$

und mit $A' = \begin{pmatrix} 1 & n' \\ 0 & 1 \end{pmatrix} \in G$ wegen $n + n' \in 2\mathbb{Z}$ auch

$$A'A = \begin{pmatrix} 1 & n+n' \\ 0 & 1 \end{pmatrix} \in G.$$

Nach dem Untergruppenkriterium ist G deshalb eine Untergruppe von $\mathrm{SL}_2(\mathbb{Q})$.

(b) Mit $A = \begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix} \in G$ und $x = (a, b, c) \in X$ liegt auch

$$Ax = (a', b', c') = (a, b + 2an, an^2 + bn + c)$$

in X. Offensichtlich gilt Ex = x und für $A' = \begin{pmatrix} 1 & n' \\ 0 & 1 \end{pmatrix} \in G$ berechnet man

$$A'(Ax) = (a', b' + 2a'n', a'(n')^2 + b'n' + c')$$

= $(a, b + 2a(n + n'), a(n + n')^2 + b(n + n') + c) = (A'A)x$.

(c) Für $A = \begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix} \in G$ ist Ax = (0, 2, 2n + 3). Es folgt $Gx = \{(0, 2, k) \mid k \in 4\mathbb{Z} + 3\}$ und wegen $Ax = x \Leftrightarrow (0, 2, 2n + 3) = (0, 2, 3) \Leftrightarrow n = 0$ ist $G_x = \{E\}$.

Aufgabe 4 (3 + 3 + 3 + 3) Punkte:

Wir fassen \mathbb{Q} als Unterkörper von \mathbb{R} auf.

- (a) Man beweise oder widerlege, dass der Ring $\mathbb{Q}[X]/(X^5-6X^2+3)$ ein Körper ist.
- (b) Man bestimme alle Zwischenkörper der Erweiterung $\mathbb{Q}(\sqrt[11]{3})/\mathbb{Q}$.
- (c) Man bestimme das Minimalpolynom von $\pi i \in \mathbb{C}$ über \mathbb{R} .
- (d) Man bestimme alle Lösungen $x \in \mathbb{Z}$ des folgenden Systems von Kongruenzen:

$$x \equiv 1 \pmod{2}$$

 $x \equiv 2 \pmod{3}$

$$x \equiv 1 \pmod{5}$$

Lösung:

- (a) Der Ring $\mathbb{Q}[X]/(X^5-6X^2+3)$ ist ein Körper, denn X^5-6X^2+3 ist irreduzibel über \mathbb{Q} nach dem Eisensteinkriterium.
- (b) Das Polynom $X^{11}-3$ ist irreduzibel über $\mathbb Q$ nach dem Eisensteinkriterium und besitzt $\sqrt[11]{3}$ als Nullstelle. Somit ist der Grad $[\mathbb Q(\sqrt[11]{3}):\mathbb Q]=11$ eine Primzahl und nach dem Gradsatz sind $\mathbb Q$ und $\mathbb Q(\sqrt[11]{3})$ die einzigen Zwischenkörper.
- (c) Das Polynom $(X (\pi i))(X (\pi + i)) = X^2 2\pi X + \pi^2 + 1$ besitzt πi als Nullstelle und hat Koeffizienten in \mathbb{R} . Wegen $\pi i \notin \mathbb{R}$ ist es irreduzibel, also

$$Irr(\pi - i, \mathbb{R}) = X^2 - 2\pi X + \pi^2 + 1.$$

(d) Offenbar ist x=11 eine Lösung. Nach dem chinesischen Restsatz ist daher $11+m\mathbb{Z}$ die Lösungsmenge mit $m=2\cdot 3\cdot 5=30$.

Aufgabe 5 (5 Punkte):

Sei p eine Primzahl und $n \in \mathbb{N}$. Ferner sei G eine nichttriviale p-Untergruppe von $\mathrm{GL}_n(\mathbb{F}_p)$. Man zeige, dass es einen Vektor $v \in \mathbb{F}_p^n$ gibt, der Eigenvektor von jeder Matrix in G ist.

Lösung:

Wir betrachten die durch Matrizenmultiplikation gegebene Wirkung $G \times \mathbb{F}_p^n \to \mathbb{F}_p^n$. Gemäß Aufgabe 5.3 (a) ist die Anzahl der Fixpunkte dieser Wirkung modulo p kongruent zu $|\mathbb{F}_p^n| = p^n \equiv 0$. Da $0 \in \mathbb{F}_p^n$ ein Fixpunkt ist, muss es wegen p > 1 mindestens einen weiteren Fixpunkt $v \in \mathbb{F}_p^n$ geben.

Alternativlösung:

Nach den Sylowsätzen (Satz 1.12.1) liegt G in einer p-Sylowuntergruppe S von G. Aufgabe 7.3 zufolge gibt es eine geordnete Basis (v_1, \ldots, v_n) von \mathbb{F}_p^n bezüglich derer die Elemente aus S durch obere Dreiecksmatrizen dargestellt werden. Insbesondere ist also $v = v_1$ ein Eigenvektor aller Matrizen in $G \subseteq S$.

Aufgabe 6 (5 Punkte):

Sei L/K eine endliche Galoiserweiterung und sei $\alpha \in L$ ein Element mit der Eigenschaft, dass $\sigma(\alpha) \neq \alpha$ für alle $\sigma \in \operatorname{Gal}(L/K)$ mit $\sigma \neq \operatorname{id}_L$ gilt. Man beweise $L = K(\alpha)$.

Lösung:

Für $\sigma_1, \sigma_2 \in G = \operatorname{Gal}(L/K)$ ist $\sigma_1(\alpha) = \sigma_2(\alpha)$ äquivalent zu $(\sigma_2^{-1}\sigma_1)(\alpha) = \alpha$ und nach Voraussetzung dann zu $\sigma_2^{-1}\sigma_1 = \operatorname{id}_L$, also zu $\sigma_1 = \sigma_2$. Das zeigt $|G\alpha| = |G|$. Nach Satz 4.1.6 gilt nun $\operatorname{Irr}(\alpha, K) = \prod_{\beta \in G\alpha} (X - \beta)$ und $|G\alpha| = |G| = [L:K]$, sodass der Grad von α über K gleich $[K(\alpha):K] = [L:K]$ ist. Es folgt $K(\alpha) = L$.