ALGEBRA I 2. ÜBUNGSBLATT

HENNING KRAUSE JAN GEUENICH

Aufgabe 1. Sei $\varphi \colon G \to H$ ein Gruppenhomomorphismus. Zeige:

- (a) Ist N ein Normalteiler in H, so ist sein Urbild $\varphi^{-1}(N)$ ein Normalteiler in G.
- (b) Ist N ein Normalteiler in G, so ist sein Bild $\varphi(N)$ ein Normalteiler in $\operatorname{Im}(\varphi)$. Finde ein Beispiel, in dem die Untergruppe $\varphi(N)$ kein Normalteiler in H ist.
- (c) Die Vorschrift $U\mapsto \varphi(U)$ induziert eine Bijektion zwischen der Menge der Untergruppen von G, die $\mathrm{Ker}(\varphi)$ enthalten, und der Menge der Untergruppen von $\mathrm{Im}(\varphi)$.

Wie lautet die entsprechende Aussage für Normalteiler?

(d) Für jedes $n \in \mathbb{N}_0$ liefert die Vorschrift $d \mapsto d\mathbb{Z}/n\mathbb{Z}$ eine Bijektion

$$\{d \in \mathbb{N}_0 \mid d \text{ teilt } n\} \stackrel{\simeq}{\longrightarrow} \text{Untergruppen von } \mathbb{Z}/n\mathbb{Z}.$$

(je 1 Punkt)

Aufgabe 2. Sei $X = \{1, 2, 3\}^2$. Ein *magisches Quadrat* ist eine Bijektion $X \xrightarrow{a} \{1, 2, \dots, 9 = 3^2\}$, $(i, j) \mapsto a_{ij}$, sodass die Summe der Einträge aller Zeilen, Spalten und der beiden Diagonalen von

a_{11}	a_{12}	a_{13}
a_{21}	a_{22}	a_{23}
a_{31}	a_{32}	a_{33}

übereinstimmen, d.h. in Formeln für alle $i \in \{1, 2, 3\}$ gilt:

$$\sum_{k} a_{ik} = \sum_{k} a_{ki} = \sum_{k} a_{kk} = \sum_{k} a_{4-k,k}$$

- (a) Zeige, dass die Menge G aller Permutationen σ von X mit der Eigenschaft, dass $a \circ \sigma$ für jedes magische Quadrat a wiederum ein magisches Quadrat ist, eine Gruppe bildet.
- (b) Bestimme G explizit. Wie viele verschiedene magische Quadrate gibt es?

(je 2 Punkte)

Abgabe: Donnerstag, 26. Oktober 2017, bis 14 Uhr in die Postfächer der TutorInnen in V3-126.

Aufgabe 3. Wir schreiben kurz $H \leq G$ für die Aussage, dass H eine Untergruppe von G ist. Sei nun G eine Gruppe und seien $A, B \leq G$. Zeige:

- (a) $A \cap B \leq G$.
- (b) $A \cup B \le G \Leftrightarrow A \subseteq B \vee B \subseteq A$.
- (c) $AB \leq G \Leftrightarrow AB \subseteq BA \Leftrightarrow AB = BA \Leftrightarrow BA \subseteq AB \Leftrightarrow BA \leq G$.
- (d) $H \cap (AB) = A(H \cap B)$ für alle $A \leq H \leq G$.

(je 1 Punkt)

Aufgabe 4. Seien A und B nichtleere Teilmengen einer endlichen Gruppe G. Zeige:

- (a) Es ist $|AB| \cdot |A \cap B| = |A| \cdot |B|$, falls $A, B \leq G$ gilt.
- (b) Gilt |A| + |B| > |G|, so ist AB = G.

(je 2 Punkte)