REPRESENTATION THEORY EXERCISES 5

HENNING KRAUSE JAN GEUENICH

1. We use the same notation as in the lecture for recollements of abelian categories, namely

$$\mathcal{C} \stackrel{\overset{i^*}{\longleftarrow} i_*}{\xleftarrow{} i_*} \mathcal{A} \stackrel{\overset{j_!}{\longleftarrow} j_*}{\xleftarrow{} j_*} \mathcal{B}.$$

Verify the following claims:

- (a) For a functor $\mathcal{A} \xrightarrow{j^*} \mathcal{B}$ of abelian categories with both a left adjoint $j_!$ and a right adjoint j_* we have that $j_!$ is fully faithful iff j_* is fully faithful iff j^* fits into a recollement.
- (b) In a recollement, the sequence $\mathcal{B} \xrightarrow{j_{\wedge}} \mathcal{A} \xrightarrow{i^{\vee}} \mathcal{C}$ is exact iff i^{\vee} is exact iff both i^{\vee} and j_{\wedge} are exact, where (\vee, \wedge) stands for either (*, !) or (!, *). In this situation, $\mathcal{C} \simeq \mathcal{A} / j_{\wedge} \mathcal{B}$.
- (c) Each recollement induces a natural exact sequence $0 \to i_*i^!j_! \to j_! \xrightarrow{\nu} j_* \to i_*i^*j_* \to 0$ of functors $\mathcal{B} \to \mathcal{A}$. The functor $j_{!*} = \operatorname{Im} \nu$ is called the *intermediate extension functor*.
- (d) i_* and $j_{!*}$ map simple objects to simple objects. On the level of isomorphism classes, these assignments are injective and every simple object of \mathcal{A} lies in the image of either i_* or $j_{!*}$.

2. Let Λ be a ring.

Write $\mathfrak{I}(\Lambda)$ for the set of ideals and $\mathfrak{I}^2(\Lambda)$ for the set of idempotent ideals in Λ . Denote by $\mathfrak{C}(\Lambda)$ the class of full subcategories of Mod Λ that are closed under submodules, factor modules, direct sums and products. Finally, let $\mathfrak{S}(\Lambda)$ be the subclass of $\mathfrak{C}(\Lambda)$ consisting of Serre subcategories.

Prove the following:

- (a) The map $\mathfrak{I}(\Lambda) \to \mathfrak{C}(\Lambda), I \mapsto \{M \in \operatorname{Mod} \Lambda : MI = 0\}$, is bijective.
- (b) The map in (a) restricts to a bijection $\mathfrak{I}^2(\Lambda) \to \mathfrak{S}(\Lambda)$.

In particular, for right artinian Λ the Serre subcategories of $\mod \Lambda$ correspond naturally to the Serre subcategories of $\operatorname{Mod} \Lambda$ that are closed under direct sums and products.

Hint for (a): Any $C \in \mathfrak{C}(\Lambda)$ is the closure of the set (i.e. not a proper class) $\{\Lambda/I : I \in \mathfrak{I}(\Lambda)\} \cap C$ under factor modules and direct sums.

3. Let *I* be an idempotent ideal of a ring Λ and $\operatorname{Mod} \Lambda/I \xrightarrow{i_*} \operatorname{Mod} \Lambda$ the canonical embedding. In the lecture you saw that i_* is homological if I_{Λ} is projective. Show that the converse is false.

Hint: Consider a suitable quotient Λ of the path algebra $\mathbb{C}Q$ of the quiver

$$Q = 1 \xrightarrow{b} 2$$

To be handed in by November 25, 2019, 2 p.m. into post box 30.

Recall that a *presheaf* \mathcal{F} on a topological space X is a contravariant functor whose source is the poset of open sets in X ordered by inclusion. Assuming the target of \mathcal{F} admits products, \mathcal{F} is said to be a *sheaf* if for any collection \mathcal{U} of open sets in X the canonical map $\mathcal{F}(\bigcup_{U \in \mathcal{U}} U) \to \prod_{U \in \mathcal{U}} \mathcal{F}(U)$ is an equalizer of the canonical pair of parallel maps $\prod_{U \in \mathcal{U}} \mathcal{F}(U) \rightrightarrows \prod_{V, W \in \mathcal{U}} \mathcal{F}(V \cap W)$.

We denote by PSh(X) and Sh(X) the category of presheaves and sheaves on X, respectively, whose target is the category of abelian groups. Clearly, PSh(X) is abelian and Sh(X) is additive.

4. Verify the following for each topological space *X*:

(a) (Sheafification) The canonical inclusion $Sh(X) \xrightarrow{\iota_X} PSh(X)$ has an exact left adjoint σ_X . From this it follows that Sh(X) is abelian and limits in Sh(X) can be computed in PSh(X).

For every continuous map $X \xrightarrow{j} Y$ show:

- (b) (*Direct image*) There is an exact functor $PSh(X) \xrightarrow{j_{\flat}} PSh(Y)$, which is given on objects as $j_{\flat}\mathcal{F}(U) = \mathcal{F}(j^{-1}(U))$. It restricts to a (not necessarily exact) functor $Sh(X) \xrightarrow{j_{\ast}} Sh(Y)$.
- (c) (*Inverse image*) j_{\flat} and j_* admit exact left adjoints j^{\flat} and $j^* = \sigma_X \circ j^{\flat} \circ \iota_Y$, respectively. The inverse image $(\{x\} \subseteq X)^* \mathcal{F}$ is known as the *stalk* \mathcal{F}_x of the sheaf \mathcal{F} at x.

Assume now that j is the open embedding of a subset of Y and let $Z \xrightarrow{i} Y$ be the closed embedding of the complement $Z = Y \setminus X$.

- (d) (*Restriction*) j^{\flat} and j^* are isomorphic to the respective restriction functor $\mathcal{F} \mapsto \mathcal{F} \circ j$.
- (e) (*Extension by zero*) j^{\flat} and j^* admit left adjoints j_{\sharp} and $j_! = \sigma_Y \circ j_{\sharp} \circ \iota_X$, respectively.
- (f) j_{\sharp} and $j_{!}$ and hence j_{\flat} and j_{*} are fully faithful.
- (g) (Vanishing on X) i_* admits a right adjoint $i^!$ given as $i^! \mathcal{F}(U) = \text{Ker}(\mathcal{F}(U \cup X) \to \mathcal{F}(X))$.
- (h) i_{\flat} and i_* are fully faithful with $\text{Im}(i_*) = \text{Ker}(j^*)$.
- (i) Summarizing, we have the following diagram where the bottom row is a recollement:

$$\operatorname{PSh}(Z) \xrightarrow{i^{p}} i_{b} \longrightarrow \operatorname{PSh}(Y) \xleftarrow{j^{p}} j_{b} \longrightarrow \operatorname{PSh}(X)$$

$$\sigma_{Z} \downarrow \uparrow^{\iota_{Z}} \qquad \sigma_{Y} \downarrow \uparrow^{\iota_{Y}} \qquad \sigma_{X} \downarrow \uparrow^{\iota_{X}}$$

$$\operatorname{Sh}(Z) \xrightarrow{i^{*}} i_{*} \longrightarrow \operatorname{Sh}(Y) \xleftarrow{j_{*}} Sh(X)$$

The top and the middle row of this recollement form exact sequences of abelian categories. In particular, we have $\operatorname{Sh}(X) \simeq \operatorname{Sh}(Y) / i_* \operatorname{Sh}(Z)$ and $\operatorname{Sh}(Z) \simeq \operatorname{Sh}(Y) / j_! \operatorname{Sh}(X)$.

(j) What are the intermediate extension functors $j_{\sharp\flat}$ and $j_{!*}$?

There is a generalization for ringed spaces. Namely, let \mathcal{O}_Y be a sheaf of commutative rings on Y. Then the categories of sheaves of modules over the induced structure sheaves fit into a recollement

$$\operatorname{Sh}(Z, i^*\mathcal{O}_Y) \xrightarrow[i^1]{} \overset{i^*}{\underset{i^!}{\longleftarrow}} \operatorname{Sh}(Y, \mathcal{O}_Y) \xrightarrow[j_*]{} \overset{j_!}{\underset{j_*}{\longleftarrow}} \operatorname{Sh}(X, j^*\mathcal{O}_Y)$$

How does the recollement between the sheaf categories in the exercise arise as a special case?