
SOLUTIONS TO EXERCISES 5 – REPRESENTATION THEORY – WS 2019/20

We will repeatedly use for adjoint pairs (L,R) with counit LR ε−→ 1 and unit 1
η−→ RL:

L fully faithful ⇔ η invertible ⇒ Lη and ηR have inverses εL and Rε, repsectively.

R fully faithful ⇔ ε invertible ⇒ Rε and εL have inverses ηR and Lη, respectively .

We use the same notation as in the lecture for recollements of abelian categories, namely

C A Bi∗ j∗
i∗

i!

j!

j∗

and denote the respective units and counits as follows:

i∗i∗ 1C i!i∗

j!j
∗ i∗i

∗

1A

i∗i
! j∗j

∗

j∗j∗ 1B j∗j!

ε∗ η!

ε!

η∗

η∗

ε!

ε∗ η!

Exercise 5.1 (a).

For adjoint triples (j!, j∗, j∗) we have the chain of equivalences

j! fully faithful ⇔ j∗j! ∼= 1B
(?)⇔ j∗j∗ ∼= 1B ⇔ j∗ fully faithful

where (?) holds since (j∗j!, j
∗j∗) is an adjoint pair and 1B is fully faithful.

More explicitly, η! is invertible iff ε∗ is invertible because the following square commutes:

j∗j∗ 1B

j∗j∗j
∗j! j∗j!

ε∗

j∗j∗η! η!

ε∗j∗j!

The functors j! and j∗ in a recollement are of course fully faithful. So all that remains to show is
that every adjoint triple (j!, j∗, j∗) with fully faithful j! and j∗ can be completed to a recollement.

Assume we have such a triple.

First of all, j∗ is exact because it has a left and a right adjoint.

Thus C = Ker(j∗) is a Serre subcategory of A and the canonical embedding C i∗−→ A is exact.

To define η∗ and ε! we consider exact sequences:

j!j
∗ 1A i∗ 0

0 i! 1A j∗j
∗

ε! η∗

ε! η∗



In particular, i∗ = Coker(ε!) and i! = Ker(η∗). These are a priori merely endofunctors of A.
But the exactness of j∗ and the invertibility of j∗ε! and j∗η∗ make sure they have image in C:

j∗Coker(ε!) ∼= Coker(j∗ε!) = 0

j∗Ker(η∗) ∼= Ker(j∗η∗) = 0

Let ε∗ = (η∗i∗)
−1 and η! = (ε!i∗)

−1. Note that η∗i∗ and ε!i∗ are invertible because of j∗i∗ = 0.

By the universal property of cokernels and kernels the following maps are identities:

i∗i∗i
∗ i∗ i∗i∗i

∗ i∗i
!i∗ i∗ i∗i

!i∗

i∗i
∗i∗ i∗ i∗i

∗i∗ i!i∗i
! i! i!i∗i

!

ε∗i∗ i∗η∗ ε!i∗ i∗η!

i∗ε∗ η∗i∗ i!ε! η!i!

Hence, (i∗, i∗) and (i∗, i
!) are adjoint pairs with counits ε∗, ε! and units η∗, η!, respectively.

All in all, we can conlude that the functors i∗, i∗, i!, j!, j∗, j∗ fit into a recollement as claimed.

Exercise 5.1 (b).

We consider the case (∧,∨) = (∗, ! ), the other case being analogous.

Recall that the sequence B A Cj∗ i! is said to be exact if i! is a weak quotient functor
and j∗ is an exact embedding whose essential image is the kernel of i!.

Obviously, the exactness of the sequence implies that i! and j∗ are exact functors. We must show
that the exactness of the sequence follows from the exactness of the functor i! in the recollement.

So let’s assume from now on that i! is exact.

Since the exact functor i! has a faithful adjoint, it is a weak quotient functor by Exercise 3.3.

Clearly, Im(j∗) ⊆ Ker(i!) because of HomC(−, i!j∗) ∼= HomB(j
∗i∗,−) = 0.

To verify Ker(i!) ⊆ Im(j∗) takeA ∈ Awith i!A = 0. By (a)A
η∗A−−→ j∗j

∗A is a monomorphism.
The invertibility of j∗η∗ and the exactness of j∗ imply that Coker(η∗A) ∈ Ker(j∗) = Im(i∗).
Hence, there exists an exact sequence

0 A j∗j
∗A i∗C 0 .

η∗A

Applying the exact functor i! to it, we get i!i∗C = 0. Because of i!i∗ ∼= 1C this means C = 0 and
thus i∗C = 0. Consequently, η∗A is an isomorphism, which shows that A belongs to Im(j∗).

It only remains to prove that j∗ is exact. To do this, let 0→ B′
f−→ B be an exact sequence in B.

As a right adjoint, the functor j∗ is left exact, so we get an exact sequence

0 j∗B
′ j∗B .

j∗f

Since Im(j∗) = Ker(i!) as a Serre subcategory of A is closed under quotient objects and j∗ is
fully faithful, we can complete it to a short exact sequence of the form

0 j∗B
′ j∗B j∗B

′′ 0 .
j∗f j∗g

Applying the exact functor j∗ and using j∗j∗ ∼= 1B, the map g turns out to be a cokernel of f .
This finishes the proof of the exactness of j∗.

Putting everything together, B A Cj∗ i! is an exact sequence of abelian categories.



Exercise 5.1 (c).

We know from (a) the exact sequences appearing in the rows of the following diagram:

j!j
∗j∗ j∗ i∗i

∗j∗ 0

0 i∗i
!j! j! j∗j

∗j!

ε!j∗

j!ε∗ ∼=

η∗j∗

j∗η!∼=

ε!j! η∗j!

Therefore it is enough to prove that the square above commutes. To see that it does, consider
the commuting diagram below, where the parallel vertical arrows are mutually inverse to each
other by the fully-faithfulness of j! and j∗ in the adjoint triple (j!, j

∗, j∗):

j!j
∗j∗ j!j

∗j∗j
∗j!

j∗

j∗j
∗j!

j!

j!j
∗j!

ε!j∗ j∗η!

j!ε∗ η∗j!

j!j
∗j∗η! ε!j∗j

∗j!

j!η! ε!j!

j!j
∗η∗j!j!ε∗j

∗j!

Exercise 5.1 (d).

Given that Im(i∗) as a Serre subcategory of A is closed under subobjects and i∗ is fully faithful
and left exact, the subobjects of S in C bijectively correspond to the subobjects of i∗S in A via

C S i∗C i∗S .
f i∗f

Since i∗ is fully faithful, f is zero / invertible iff i∗f is zero / invertible. Hence, the bijection:

{simples in C}/∼= {simples in A belonging to Im(i∗)}/∼=
i∗

To prove that j!∗S is simple in A for each simple object S in B, we have to show j!∗S 6= 0 and
for every short exact sequence ξ : 0 → A′ → j!∗S → A′′ → 0 in A that A′ = 0 or A′′ = 0.
Applying the exact functor j∗ firstly to the exact sequence in (c) yields j∗j!∗S ∼= S 6= 0 and
applying it secondly to ξ we obtain an exact sequence 0 → j∗A′ → S → j∗A′′ → 0. Since by
assumption S is simple, we can conlude that either A′ or A′′ must belong to Ker(j∗) = Im(i∗).
But this means that either A′ = 0 or A′′ = 0 because of the following:

HomA(i∗, j!∗) HomA(i∗, j∗) HomB(j
∗i∗,−) = 0

HomA(j!∗, i∗) HomA(j!, i∗) HomB(−, j∗j∗) = 0

∼=

∼=



By the consideration above we have an injective map

{simples in B}/∼= {simples in A not belonging to Ker(j∗)}/∼=
j!∗

where (restricted to its image) the left inverse is induced by j∗. We now verify its bijectivity.

Observe that according to (c) we have a commuting diagram:

j!j
∗

j!∗j
∗ j!j

∗j∗j
∗ 1A

j∗j
∗

j!j
∗η∗

ε!

ε!j∗j
∗

j!ε∗j∗

η∗

As a consequence, there is an induced map j!∗j∗ ↪→ Im(η∗).

Thus, for simples S inA with j∗S 6= 0, it follows 0 6= j!∗j
∗S ↪→ Im(η∗S)� S, so j!∗j∗S ∼= S.

Furthermore, j∗S is simple in B. Indeed, since j!∗ preserves monomorphisms thanks to the left
exactness of j∗, any subobject α : B ↪→ j∗S gives rise to a subobject j!∗α : j!∗B ↪→ j!∗j

∗S ∼= S,
which is zero or invertible. Applying j∗ to j!∗α and using (c), we see that α is zero or invertible.

All things considered, this proves that j∗ induces the inverse of the above map induced by j!∗.



Before addressing Exercise 5.4, we begin with a few simple observations.

By definition a category D has colimits or limits, respectively, if for every small J the diagonal
functor D → DJ , D 7→ (D)j∈J , has a left adjoint colim or a right adjoint lim, respectively.

Evidently, a product category D =
∏

iDi has (co)limits iff all Di have (co)limits. This follows
immediately from the canonical isomorphism DJ ∼=

∏
iDJi . In this case, we have for F ∈ DJ

(co)limF =
(
(co)limFi

)
i
.

We can apply these considerations to the product category PSh(X) = AbT (X)op , where T (X)
is the poset of open sets in X ordered by inclusion and Ab is the category of abelian groups.
Recall that in Ab (co)limits are given explicitly as follows for F ∈ AbJ :

colimF =
⊕

j∈J F (j)
/(

eix− ejα(x) : i
α−→ j in J , x ∈ F (i)

)
limF =

{
x ∈

∏
j∈J F (j) : xj = α(xi) for all i α−→ j in J

}
This shows that the category PSh(X) has (co)limits and also how to canonically compute them.
As a consequence, it is now clear why PSh(X) is abelian and why Sh(X) is additive.

Exercise 5.4 (a).

For collections U of open sets in X let

fU = (fVV ∩W − fWV ∩W )V,W∈U :
∏

U∈U F(U)
∏

V,W∈U F(V ∩W )

be the morphism of abelian groups given by the canonical maps

fVV ∩W :
∏

U∈U F(U) F(V ) F(V ∩W ) .

We obtain an endofunctor ε of PSh(X) given on objects as εF(M) = colimU∈Cov(M) Ker(fU),
where Cov(M) is the (opposite of the) poset of open coverings of M ordered by refinement.

We claim that σX = ε2 has image in Sh(X) and is left adjoint to ιX .

TO BE CONTINUED . . .



Exercise 5.4 (b).

The existence and exactness of j[ is clear. It restricts to a functor j∗ between the subcategories
of sheaves because kernels of sheaves can be computed in the category of presheaves by (a).

Let’s now look at an example that illustrates why j∗ does not have to be (right) exact.

Namely, consider a topological spaceX whose poset of opens has the following Hasse diagram:

·

· ·

·

·

We have a morphism of presheaves on X induced by the global section Z
( 11 )−−→ Z⊕ Z:

Z

Z Z

Z

0

1 1

1 1

f−−−−−−−−−→

Z⊕ Z

Z Z

Z

0

(1 0) (0 1)

1 1

Taking now for X the topological space {0, 1, 2} with subbase {{0, 1}, {0, 2}}, the map f is an
epimorphism in Sh(X) because it is surjective on stalks. However, it is clearly not surjective on
global sections, i.e. the direct image (X → {•})∗f is not an epimorphism.

Exercise 5.4 (c).

We can take for j[ the functor that is given on objects as j[F(U) = colimFj(U) where Fj(U) is
the restriction of F to the set of all neighborhoods of j(U) in Y .

By the universal property of colimits we then have mutually inverse maps

HomPSh(X)(j
[F ,G) HomPSh(Y )(F , j[G) .

α

β

Indeed, α(f)(V ) simply is f(j−1(V )) precomposed with the canonical map F(V )→ j[F(V ).

Contrariwise, let F g−→ j[G and let U be open in X . Then for any neighborhood V of j(U) in Y
we can postcompose g(V ) with the map G(j−1(V )) → G(U) to obtain a map F(V ) → G(U).
The universal property of the colimit applied to these latter maps induces β(g)(U).

Consequently, (j[, j[) is an adjoint pair and hence so is (j∗ = σX ◦ j[ ◦ ιY , σY ◦ j[ ◦ ιX) by (a).
It only remains to observe that σY ◦ j[ ◦ ιX = σY ◦ ιY ◦ j∗ ∼= j∗ since ιY is fully faithful.



Exercise 5.4 (d).

If j(U) is open in Y , then the subposet of T (Y ) consisting of all neighborhoods of j(U) in Y
has j(U) as its least element, so we get an induced isomorphism colimFj(U) → F(j(U)).

Hence, if j is an open embedding, j[ is canonically isomorphic to the restriction functor j\.

Again, since kernels in the category of sheaves can be computed in the category of presheaves, j[

restricts to a functor jz between sheaf categories. Hence, jz ∼= σX ◦ιX ◦jz = σX ◦j\◦ιY ∼= j∗.

Exercise 5.4 (e).

We can take for j] the functor that is given on objects as

j]F(U) =

{
F(U) if U ⊆ X ,
0 otherwise.

Obviously, there are canonical mutually inverse maps

HomPSh(Y )(j]F ,G) HomPSh(X)(F , j[G) .
α

β

Indeed, α(f)(U) = f(U) and β(g)(U) = g(U) for U ⊆ X and β(g)(U) = 0 for U 6⊆ X .

Consequently, (j], j[) is an adjoint pair and hence so is (j! = σY ◦ j] ◦ ιX , j∗) by (a).

Exercise 5.4 (f).

Similarly as for j∗ in (b) and for j[ in (d), we see that j] restricts to a functor j? between sheaf
categories and we can then conclude j? ∼= j!.

Now, denoting by (C,∧,∨) either of (PSh(X), [, ]) or (Sh(X),z, ?) the unit 1C
η−→ j∧j∨ of the

adjoint pair (j∨, j∧) is invertible because of ηF(U) = idF(U). Hence, j∨ is fully faithful.

The fully faithfulness of j[ and j∗ is then a consequence of Exercise 5.1 (a).

Exercise 5.4 (g).

The pair (i∗, i!) is adjoint because there are canonical mutually inverse maps

HomSh(Y )(i∗F ,G) HomSh(Z)(F , i!G) .
α

β

On the one hand, take i∗F
f−→ G. Then, for each open set U in Y , we have a commuting diagram

Ker(GUU∩X) Ker(GU∪XX )

F(U ∩ Z) G(U) G(U ∪X)

F(∅) = 0 G(U ∩X) G(X)

κG,U
∼=

κ̃G,U
f(U)

f̃(U)

GUU∩X GU∪XX

f(U∩X)

inducing α(f)(U ∩Z) = κ−1G,U ◦ f̃(U), where F(∅) = 0 since F is a sheaf and κG,U is invertible
since G is a sheaf. On the other hand, β(g)(U) = κ̃G,U ◦ g(U ∩ Z) defines the inverse β of α.



Exercise 5.4 (h).

Note that in general, if Z carries the initial topology with respect to a continuous map Z i−→ Y ,
the fully faithfulness of i[ follows formally by an argument similar to the one given in (d).

Indeed, for open sets U in Y , the set {i−1(V ) : V is a neighborhood of i(i−1(U)) in Y } ordered
by inclusion has i−1(U) as its least element such that by the universal property of the colimit
there exists a canonical isomorphism i[i[ → 1PSh(Z), i.e. i[ is fully faithful.

For the fully faithfulness of i∗ note that, for open sets U in Y , there are canonical isomorphisms

i!i∗F(U ∩ Z) = Ker(F(U ∩ Z)→ F(∅) = 0)
∼=−−→ F(U ∩ Z) .

Evidently, Im(i∗) ⊆ Ker(j∗) because of j∗i∗G(U) = G(U ∩ Z) = G(∅) = 0 for U ⊆ X .

Conversely, G ∼= i∗i
!G for G ∈ Ker(j∗) since j∗G = 0 means that G(U ∩X) = j∗G(U ∩X) = 0

for all open U in Y such that the diagram from (g) yields canonical isomorphisms

i∗i
!G(U) = Ker

(
GU∪XX

) ∼=−−→ Ker(G(U)→ G(U ∩X) = 0)
∼=−−→ G(U) .

Exercise 5.4 (i).

This is an immediate consequence of Exercise 5.1 and 5.4 (a)–(h).


