REPRESENTATION THEORY EXERCISES 8

HENNING KRAUSE JAN GEUENICH

1. Let Λ be a ring. We will denote by Mod Λ the category of Λ -modules and by fg Λ and mod Λ , respectively, its full subcategories consisting of finitely generated and finitely presented modules.

- (a) Prove the following:
 - (i) The category fg Λ is abelian iff fg $\Lambda = \mod \Lambda$ iff Λ is right noetherian.
 - (ii) The category $\operatorname{mod} \Lambda$ is abelian iff Λ is right coherent.
 - (iii) If Λ is right coherent, then the embedding $\operatorname{mod} \Lambda \hookrightarrow \operatorname{Mod} \Lambda$ is homological.
- (b) Show similarly that the canonical embedding Filt(Δ) → A is homological for any highest weight category A with standard objects Δ_i.
- **2.** For the highest weight categories $\mathcal{A} = \text{mod } \Lambda$ in Exercises 4.2 (b) and 4.3 (a) do the following:
 - (a) Compute the Auslander-Reiten quiver of A.
 - (b) Determine all indecomposable objects in \mathcal{A} belonging to Filt(Δ).
 - (c) Determine all indecomposable objects in \mathcal{A} belonging to $\operatorname{Filt}(\nabla)$.
 - (d) Find the indecomposable objects T_i in \mathcal{A} such that $T = \bigoplus_i T_i$ is the characteristic tilting object and determine the exact sequences

 $0 \longrightarrow V_i \longrightarrow T_i \longrightarrow \nabla_i \longrightarrow 0$ $0 \longrightarrow \Delta_i \longrightarrow T_i \longrightarrow W_i \longrightarrow 0$

satisfying $V_i \in \text{Filt}(\{\nabla_j : j < i\})$ and $W_i \in \text{Filt}(\{\Delta_j : j < i\})$.

(e) Describe the Ringel dual $\operatorname{End}_{\mathcal{A}}(T)$ as a path algebra $\mathbb{C}Q$ modulo an admissible ideal *I*.

3. Let k be a field of characteristic p and let $V = k^n$ for some positive integer n.

Verify the following claims in the case that p is not a prime less than or equal to d:

- (i) The canonical projection $(V^{\otimes d})^{\mathfrak{S}_d} \to S^d V$ is invertible.
- (ii) The Schur algebra $S_k(n, d)$ is semisimple.
- (iii) Explicitly, for n = d = 2, we have $S_k(2,2) \cong k \times M_3(k)$.

4. Describe the basic version of the group algebra $k\mathfrak{S}_p$ and the Schur algebra $S_{\mathbb{F}_p}(p, p)$ each as a path algebra modulo an admissible ideal, both for p = 2 and for p = 3.

To be handed in by December 12, 2019, 2 p.m. into post box 30.