Universität Bielefeld WS 2019/20

GRUPPEN UND SYMMETRIEN LÖSUNG VON TRAININGSZETTEL III

JULIA SAUTER

Aufgaben zu Nebenklassen und dem Satz von Lagrange:

Es sei $G = (\mathbb{Z}/15\mathbb{Z})^{\times}$. Berechnen Sie den Index der Untergruppe $U = \langle \overline{2} \rangle$ und finden Sie alle Linksnebenklassen von U (d.h. insbesondere: welche gleich sind und welche verschieden).

Lösung: Es gilt $G = (\mathbb{Z}/15)^{\times} = \{\overline{1}, \overline{2}, \overline{4}, \overline{7}, \overline{8}, \overline{11}, \overline{13}, \overline{14}\}$ und $U = \langle \overline{2} \rangle = \{\overline{2}^0 = \overline{1}, \overline{2}^1 = \overline{2}, \overline{2}^2 = \overline{4}, \overline{2}^3 = \overline{8}\}$ (hier wurde benutzt: Wegen $\overline{2}^4 = \overline{16} = \overline{1}$ und keine der kleineren Potenzen ist $\overline{1}$ folgt $\operatorname{ord}_{(\mathbb{Z}/15\mathbb{Z})^{\times}}(\overline{2}) = 4$). Also gilt nach dem Satz von Lagrange, dass es $\frac{|G|}{|U|} = \frac{8}{4} = 2$ verschiedene Linksnebenklassen von U in G gibt. Natürlich ist $U = \overline{1} \cdot U = \overline{2} \cdot U = \overline{4} \cdot U = \overline{8} \cdot U$ eine der beiden Linksnebenklassen. Die andere Linksnebenklasse finden wir als $\overline{7} \cdot U \neq U$, denn $\overline{7} \notin U$. Hier gilt: $\overline{7} \cdot U = \overline{11} \cdot U = \overline{13} \cdot U = \overline{14} \cdot U$, denn:

Hier geht es um die Nebenklassen der Restklassen $\overline{(-8)},\overline{(-4)},\overline{(-2)},\overline{(-1)}$ - deren Inverse sind respektive $\overline{(-2)},\overline{(-4)},\overline{(-2)},\overline{(-1)}$. Es gilt $\overline{k}\cdot U=\overline{\ell}\cdot U$ genau dann, wenn $\overline{k\ell}^{-1}\in U$. Da es sich um die negativen Restklassen der Restklassen aus U handelt und U eine Untergruppe ist, ist diese Bedingung für je zwei der vier erfüllt.

Aufgaben zur symmetrischen Gruppe:

(1) Gegeben sind die folgenden Permutationen in S_7

$$\sigma_{1} = (2,1) \circ (2,3) \circ (6,5) \circ (6,4)
\sigma_{2} = (1,2) \circ (2,7) \circ (3,4) \circ (2,3) \circ (1,2) \circ (1,5) \circ (1,2) \circ (2,3) \circ (3,4) \circ (6,3)
\sigma_{3} : \mathbb{Z}/7\mathbb{Z} \to \mathbb{Z}/7\mathbb{Z}, \quad \overline{x} \mapsto \overline{4x+1}
\sigma_{4} : \mathbb{Z}/7\mathbb{Z} \to \mathbb{Z}/7\mathbb{Z}, \quad \overline{x} \mapsto \overline{2x+2}$$

(a) Berechnen Sie die Ordnung und das Vorzeichen dieser Permutationen.
Lösung: Wir schreiben alle Permutationen als Produkt disjunkter Zykel, um die Ordnung zu berechnen:

$$\sigma_{1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 2 & 3 & 1 & 5 & 6 & 4 & 7 \end{pmatrix} = (1, 2, 3) \circ (4, 5, 6)
\sigma_{2} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 2 & 7 & 6 & 5 & 4 & 3 & 1 \end{pmatrix} = (1, 2, 7) \circ (3, 6) \circ (4, 5)
\sigma_{3} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 5 & 2 & 6 & 3 & 7 & 4 & 1 \end{pmatrix} = (1, 5, 7) \circ (3, 6, 4)
\sigma_{4} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 4 & 6 & 1 & 3 & 5 & 7 & 2 \end{pmatrix} = (1, 4, 3) \circ (2, 6, 7)$$

Die Ordnung ist das kgV der Zykelängen in diesen Faktorisierungen, somit gilt: $\operatorname{ord}(\sigma_1) = \operatorname{ord}(\sigma_3) = \operatorname{ord}(\sigma_4) = 3$ und $\operatorname{ord}(\sigma_2) = 6$.

Da Vorzeichen eines Produktes disjunkter Zykel $z_1 \circ z_2 \circ \cdots \circ z_t$ berechnet sich als $(-1)^{\sum_{i=1}^t (|z_i|-1)}$, somit gilt: $\operatorname{sign}(\sigma_1) = \operatorname{sign}(\sigma_3) = \operatorname{sign}(\sigma_4) = (-1)^{2+2} = 1$ und $\operatorname{sign}(\sigma_3) = (-1)^{2+1+1} = 1$.

1

- (b) Finden Sie alle Paare konjugierter Elemente unter diesen Permutationen. **Lösung:** Zwei Elemente in S_n sind genau dann konjugiert, wenn sie den gleichen Zykeltyp haben. Da $\sigma_1, \sigma_3, \sigma_4$ den gleichen Zykeltyp [3, 3, 1] haben sind sie paarweise konjugiert. Der Zykeltyp von σ_2 ist [3, 2, 2] und somit ist σ_2 nicht konjugiert zu einem der anderen σ_i .
- (c) Für jedes Paar konjugierter Permutationen finden Sie ein $g \in S_7$, so dass die Konjugation mit g das andere Element gibt.

Lösung: Wir schreiben die Permutationen σ_1 , σ_3 , σ_4 untereinander, so dass Zykel gleicher Länge untereinander stehen. Dann definieren wir die Abbildungen g_i als die Vorschrift, die die Zahlen in der höheren Zeile auf die darunter abzubilden, genauer: g_1 für σ_1 über σ_2 , g_2 für σ_3 über σ_4 und g_3 für σ_3 über σ_4 :

$$g_1 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 1 & 5 & 7 & 3 & 6 & 4 & 2 \end{pmatrix} = (2, 5, 6, 4, 3, 7)$$

$$g_2 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 1 & 5 & 2 & 7 & 4 & 6 & 3 \end{pmatrix} = (2, 5, 4, 7, 3)$$

$$g_3 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 1 & 4 & 3 & 2 & 6 & 6 & 7 \end{pmatrix} = (2, 4) \circ (5, 6, 7)$$

Nach Vorlesung (oder durch direktes Nachrechnen) erhält man $g_1\sigma_1g_1^{-1}=\sigma_3$, $g_2\sigma_3g_2^{-1}=\sigma_4$, $g_3\sigma_1g_3^{-1}=\sigma_4$. Natürlich erhält man auch $g_1^{-1}\sigma_3g_1=\sigma_1$, $g_2^{-1}\sigma_4g_2=\sigma_3$, $g_3^{-1}\sigma_4g_3=\sigma_1$.

(2) (a) Finden Sie alle Konjugationsklassen in S_4 und beschreiben Sie, wie viele Elemente diese haben.

Lösung: Die Konjugationsklassen sind durch die Zykeltypen beschrieben, für S_4 sind dies [1, 1, 1, 1], [2, 1, 1], [2, 2], [3, 1], [4].

- * In der Konjugationsklasse zu [1,1,1,1] liegt nur die Identität.
- * In der Konjugationsklasse zu [2, 1, 1] liegen genau die Transpositionen, davon gibt es $\binom{4}{2} = 6$.
- * In der Konjugationsklasse zu [2,2] liegen nur die drei Elemente $(1,2) \circ (3,4)$, $(1,3) \circ (2,4)$ und $(1,4) \circ (2,3)$.
- * In der Konjugationsklasse [3,1] liegen die 3-Zykel. Davon gibt es genau acht, nämlich (1,2,3), (1,2,4), (1,3,4), (2,3,4) und deren Inverse (1,3,2), (1,4,2), (1,4,3), (2,4,3).
- * In der Konjugationsklasse [4] leben alle Elemente (1, i, j, k) mit $\{i, j, k\} = \{2, 3, 4\}$. Davon gibt es genau so viele wie verschiedene Anordnungen der drei Elemente 2, 3, 4 also 6.
- (b) Beschreiben Sie alle möglichen Zykeltypen in S_7 und berechnen Sie die maximale Ordnung eines Elementes in S_7 .

Die Ordnung aller Elemente eines Zykeltyps berechnet sich als kgV der Einträge in $[a_1, a_2, \ldots, a_t]$. Damit wird die maximale Ordnung $12 = 3 \cdot 4$ genau bei allen Elementen des Zykeltyps [4, 3] erreicht.

(3) Sei D_6 die Diedergruppe erzeugt von einer Drehung r der Ordnung 6 und einer Spiegelung s. Wir fixieren die folgende Nummerierung der Elemente in D_6 :

$$g_1 = 1, g_2 = r, g_3 = r^2, \dots, g_6 = r^5, g_7 = s, g_8 = sr, g_9 = sr^2, \dots, g_{12} = sr^5$$

Mit dieser Nummerierung, erhalten wir einen injektiven Gruppenhomomorphismus $f: D_6 \to S_{12}$ gegeben durch die Abbildung, die g_i auf die Linksmultiplikation mit g_i abbildet und j mit g_j identifiziert.

(a) Schreiben Sie f(s), f(r) und $f(r^3)$ in S_{12} als Produkt disjunkter Zykel. Welche dieser drei Elemente sind konjugiert zueinander?

```
Lösung: f(s) = (1,7) \circ (2,8) \circ (3,9) \circ (4,10) \circ (5,11) \circ (6,12) f(r) = (1,2,3,4,5,6) \circ (7,12,11,10,9,8) f(r^3) = (1,4) \circ (2,5) \circ (3,6) \circ (7,10) \circ (8,11) \circ (9,12) Der Zykeltyp von f(s) und f(r^3) ist [2,2,2,2,2,2] und der von f(r) ist [6,6], also sind nur f(s) und f(r^3) in S_{12} zueinander konjugiert.
```

(b) Zeigen Sie, dass s und r^3 nicht konjugiert in D_6 sind. **Lösung:** r^3 kommutiert mit allen anderen Elementen in D_6 , deswegen ist r^3 nur zu sich selber konjugiert und nicht zu s.