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Abstract. Let X be the blow-up of P2
C in a finite set of points in very general position. We

show that X has only standard autoequivalences, no nontrivial Fourier–Mukai partners, and

admits no spherical objects. Further, we show that the same result holds if X is a blow-up of
finitely many points in a minimal surface of nonnegative Kodaira dimension which contains no
(−2)-curves. Independently, we characterize spherical objects on blow-ups of minimal surfaces of

positive Kodaira dimension.

1. Introduction

Let X be a smooth projective variety over the complex numbers and denote by Db(X) the
bounded derived category of coherent sheaves on X. If the canonical bundle ωX is ample or
anti-ample, then, by Bondal–Orlov [BO01], the group of autoequivalences Aut(Db(X)) only consists
of so-called standard autoequivalences, i.e.

Aut(Db(X)) = Pic(X)⋊Aut(X)× Z[1].

In general, the standard autoequivalences Pic(X)⋊Aut(X)× Z[1] form a subgroup of Aut(Db(X))
and Db(X) often admits of non-standard autoequivalences, see, e.g., [Orl02] for the case of abelian
surfaces and [BB17] for the case of K3 surfaces of Picard rank 1. A natural source for non-standard
autoequivalences are so-called spherical twists [ST01].

In contrast to the case of varieties with trivial canonical class, a spherical object on a variety
with nontrivial and non-torsion canonical class has to be supported on a proper closed subset,
see Lemma 2.2. If X is a certain toric surface [BP14, Thm. 1, Thm. 2] or a surface of general
type whose canonical model has at worst An-singularities [IU05, Thm. 1.5], then Aut(Db(X)) is
generated by standard equivalences and spherical twists.

In Sections 3 and 4, we focus on rational surfaces X which are blow-ups of P2
C in a finite set

of points in very general position. It follows from [Fer05, Prop. 2.2], recalled in Proposition 2.3,
that such a surface X does not contain any (−2)-curve. Motivated by the results of [IU05], it is
reasonable to expect that the absence of (−2)-curves implies the absence of spherical objects. We
confirm this expectation by arguing that a spherical object on X has to be supported on a union of
rational integral curves, see Lemma 3.2. Moreover, we obtain the following

Theorem 1.1. Let X be the blow-up of P2
C in a finite set of points in very general position. Then

the following statements hold:

(i) Any autoequivalence of X is standard, i.e. Aut(Db(X)) = Pic(X)⋊Aut(X)× Z[1].
(ii) If Y is a smooth projective variety such that Db(X) ∼= Db(Y ), then X ∼= Y .
(iii) There exists no spherical object in Db(X).

By [Fav12, Cor. 4.4], for any smooth projective variety X we have that (i) implies (ii). Moreover,
if X is a smooth projective variety of dimension ≥ 2 with nontrivial and non-torsion canonical class,
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then (i) implies (iii). Indeed, arguing as in Lemma 2.2, a spherical object S on such a variety X
has to be supported on a proper closed subvariety. By [Huy06, Ex. 8.5 (ii)], the spherical twist TS

associated to S satisfies TS(S) = S[1− dimX] and TS(k(x)) = k(x) for any point x ∈ X \ Supp(S).
Thus, TS is a non-standard autoequivalence.

We provide two proofs of Theorem 1.1, both utilizing the results of de Fernex [Fer05] regarding
rational curves in the blow-up of P2

C in a finite set of points in very general position. The first
proof relies on the geometric observation that a curve C ⊆ X such that KX |C is trivial in CH0(C)Q
is rational; see Lemma 3.2. This allows to give a direct proof of each statement in Theorem 1.1
(although, as explained above, it would suffice to prove (i) by using the result of Favero). The
second proof, outlined in Section 4, relies on Uehara’s more general classification results and his
description of autoequivalence groups of surfaces with Fourier–Mukai support dimension 2 satisfying
a condition on the configuration of (−2)-curves [Ueh19].

In Section 5 we consider blow-ups X of minimal surfaces Y of nonnegative Kodaira dimension.
In contrast to the case of rational surfaces, (−2)-curves on X are strict transforms of (−2)-curves
on Y , see Proposition 5.1. Thus, using [Ueh19], we obtain

Theorem 1.2 (Theorem 5.2). Let Y be a minimal surface of nonnegative Kodaira dimension and
let X be the blow-up of Y in a nonempty finite set of points. Assume Y contains no (−2)-curves,
e.g. Y has Kodaira dimension 1 and the elliptic fibration of Y has only irreducible fibers. Then
Db(X) admits only standard autoequivalences, i.e.

Aut(Db(X)) = Pic(X)⋊Aut(X)× Z[1].

As outlined above, Theorem 1.2 implies that such X has no Fourier–Mukai partners and Db(X)
does not contain spherical objects.

In Proposition 5.7 we characterize spherical objects on blow-ups X of minimal surfaces Y of
positive Kodaira dimension: An object in Db(X) is spherical if and only if it is the pullback of a
spherical object in Db(Y ) whose support is disjoint from the exceptional locus of X → Y . If Y is a
minimal surface of Kodaira dimension 1 whose elliptic fibration has only irreducible fibers, this
characterization combined with the results of [Ueh16] gives an alternate proof that Db(X) does not
contain spherical objects, see Remark 5.9.

Acknowledgements. The authors thank Hokuto Uehara and Charles Vial for useful comments on
an earlier draft of this paper. Further, the authors thank Gebhard Martin for helpful discussions
regarding elliptic surfaces.

Conventions. The term surface always refers to a smooth projective 2-dimensional variety over
C. For a variety X, we denote by CH∗(X) (resp. CH∗(X)) the Chow groups of algebraic cycles
modulo rational equivalence with integer coefficients graded by codimension (resp. dimension). We
denote by CH∗(X)Q := CH∗(X)⊗Z Q the Chow groups with rational coefficients. A (−k)-curve C
in a surface S is an integral smooth rational curve C with self-intersection number −k.

2. Preliminary Observations

Let X be a smooth projective variety. The support of an object F ∈ Db(X) is by definition the
closed subvariety

Supp(F ) :=
⋃
i∈Z

Supp(Hi(F )) ⊆ X

endowed with the unique reduced closed subscheme structure. If F is a simple object, i.e.
Hom(F, F ) = C, then Supp(F ) is connected; see, e.g., [Huy06, Lem. 3.9].

Definition 2.1. An object S ∈ Db(X) is called spherical if

Hom(S, S[i]) =

{
C if i = 0,dimX,

0 else,

and S ⊗ ωX
∼= S.
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Denote by p, q : X ×X → X the projections and by ∆ ↪→ X ×X the diagonal embedding. If S is a
spherical object on X, the object PS := Cone(Lq∗S∨ ⊗L Lp∗S → O∆) ∈ Db(X ×X) is the Fourier–
Mukai kernel of the spherical twist TS : D

b(X) → Db(X) given by TS(−) = Rp∗(PS ⊗L Lq∗(−)).

Note that by [ST01, Thm. 1.2] a spherical twist is always an autoequivalence of Db(X). The
condition S ⊗ ωX

∼= S has the following consequence on the support of a spherical object:

Lemma 2.2. Let X be a smooth projective positive dimensional variety with KX ̸= 0 in CH∗(X)Q,
i.e. ωX is nontrivial and non-torsion. Then any spherical object S ∈ Db(X) is supported on a
connected proper closed subset.
Moreover, if X is a surface, then Supp(S) is a, possibly reducible, connected curve C =

⋃
i Ci such

that KX |C̃i
= 0 in CH1(C̃i)Q, where Ci are the irreducible components of C and C̃i → Ci are the

normalizations. In particular, KX · C = 0 ∈ Z.

Proof. Denote by Hi(S) ∈ CohX the i-th cohomology sheaf of S. Since ωX is a line bundle, we
have

Hi(S)⊗ ωX = Hi(S ⊗ ωX) ∼= Hi(S),

which yields ch(Hi(S)) ch(ωX) = ch(Hi(S)) in CH∗(X)Q. If Hi(S) had positive rank, then
ch(Hi(S)) would be invertible in CH∗(X)Q, hence ch(ωX) = 0. This contradicts to KX being
non-torsion. Hence, all cohomology sheaves Hi(S) have rank zero and thus the generic point of X
is not contained in the support of S. Thus, dimSupp(S) < dimX and Supp(S) is connected by
[Huy06, Lem. 3.9].

Assume in addition that dimS = 2. If S were supported on a point, then [Huy06, Lem. 4.5]
would show that S ∼= k(x)[m] for some x ∈ X and m ∈ Z. In particular, χ(k(x)[m], k(x)[m]) = 0,
but χ(S, S) = 2. Hence, Supp(S) is 1-dimensional and connected, i.e. a connected reduced, possibly
reducible, curve.

Let Ci ⊆ X be an irreducible curve, contained in Supp(S) and let C̃i → Ci be its normalization.

Denoting by j : C̃i → Ci ↪→ X composition, we obtain by the projection formula

KX · Ci = j∗j
∗KX ∈ CH0(X).

Let H be a cohomology sheaf of S which has nonzero rank restricted on Ci. The equality
ch(H) = ch(H) ch(ωX) on X shows ch(j∗H) = ch(j∗H) ch(j∗ωX) on C̃i. Since j∗H has nonzero

rank, this implies that j∗KX is torsion in CH0(C̃i). We conclude that the intersection number
KX · Ci = deg(j∗j

∗KX) is zero. □

Let X be the blow-up of P2
C in a finite set of points in very general position. The following result

of de Fernex shows that X contains no integral rational curves of self-intersection less or equal
than −2.

Proposition 2.3 ([Fer05, Prop. 2.3]). Let X be the blow-up of P2
C in a finite set of points in very

general position. If C ⊆ X is an integral rational curve with C2 < 0, then C is a (−1)-curve, that
is a smooth rational curve of self-intersection −1.

Moreover, the following Proposition 2.4 follows from the proof of [Fer05, Prop. 2.4].

Proposition 2.4 ([Fer05]). Let X be the blow-up of P2
C in a finite set of points in very general

position. If C ⊆ X is an integral rational curve, then C ·KX < 0.

Therefore X cannot contain an integral rational curve C ⊆ X such that C ·KX = 0.

3. Proof of Theorem 1.1

In Lemma 2.2 we have seen that a spherical object in Db(X) is supported on a curve C ⊆ X
such that Ci ·KX = 0 for every irreducible component Ci of C. The proof of Theorem 1.1 relies on
a refinement of this observation, namely that every such curve Ci is rational.

Recall the following construction from [Voi03, § 10]: Let X be a projective variety over C and
denote by X(d) the d-th symmetric product of X. Let c : X(d) → CH0(X) be the map defined by

X(d) ∋ Z 7→ class of Z mod rational equivalence.
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Further define

σd : X
(d) ×X(d) → CH0(X)hom

(Z1, Z2) 7→ c(Z1)− c(Z2),

where CH0(X)hom ⊆ CH0(X) denotes the subspace of homologically trivial cycles.

Lemma 3.1 ([Voi03, Lem. 10.7]). The fibers of σd are countable unions of closed algebraic subsets
of X(d) ×X(d).

Lemma 3.2. Let X be the blow-up of P2
C in n points in general position. If C ⊆ X is an integral

curve with KX |C̃ = 0 ∈ CH1(C̃)Q, where C̃ → C is the normalization, then C is rational.

Proof. We denote by Ei the exceptional divisor over the i-th blown up point. Then KX =
−3H +

∑
i Ei and by assumption mKX |C = 0 ∈ CH1(C)Q for all m ∈ Z. Note that C cannot be

one of the exceptional curves Ei, since KX ·Ei = −1 for all i. Hence, C is the strict transform of a
curve of degree d = H ·C. Since mKX ·C = 0, the intersection of m

∑
i Ei and C defines a unique

point in the symmetric product Z2 := (x1, . . . , x3md) ∈ C(3md).
Consider the set

|3mH| ∩ C := {C ′ ∩ C | C ′ ∈ |3mH| such that C ̸⊆ C ′}
as a subset of C(3md). We claim that for sufficiently large m > 0 the subset |3mH| ∩ C is dense in
C(3md).

Indeed, let q1, . . . , q3md ∈ C \ E1 ∪ · · · ∪ En be pairwise distinct points and let X ′ → X be the
blow-up of q1, . . . , q3md. Denote by E′

i the exceptional divisor over the point qi for 1 ≤ i ≤ 3md
and consider the divisor

D := 3mH −
3md∑
i=1

E′
i on X ′.

A member of the linear system |D| can be identified with a curve in P2
C of degree 3m vanishing at

the points q1, . . . , q3md. By Riemann–Roch

χ(D) = 1 +
1

2
D · (D −KX′) = 1 +

1

2
(9m2 + 9m− 6md),

thus χ(D) > 0 for sufficiently large m > 0. Since Serre duality shows

h2(X ′,OX′(D)) = h0(X ′,OX′(−D +KX′)) = h0

(
X ′,OX′

(
−3(m+ 1)H +

n∑
i=1

Ei

))
= 0,

we have h0(X ′,OX′(D)) ≥ χ(D) > 0 for sufficiently large m > 0. It follows from [Mig01, Thm. 1]
that a general member C ′ of |D| is smooth and irreducible for sufficiently large m > 0. Hence,
C ̸⊆ C ′ and C ∩C ′ = {q1, . . . , q3md}. This shows that |3mH| ∩C contains a Zariski open subset of
C(3md) for sufficiently large m > 0. For the rest of the proof we fix such m > 0.

We first assume that C is smooth. Further, we assume for contradiction that C is not rational. Let
σ̄3md be the restriction of σ3md : C

(3md) ×C(3md) → CH0(C)hom to C(3md) ×{Z2}. By Lemma 3.1,
for every t ∈ CH0(C) the fiber σ̄−1

3md(t) is a countable union of closed algebraic subsets. We
denote by CH0(C)tor the torsion classes in CH0(C). Recall that CH0(C)tor is countable, thus⋃

t∈CH0(C)tor
σ̄−1
3md(t) is also a countable union of closed algebraic subsets. Let

Z1 := Z2 − x3md + y = x1 + · · ·+ x3md−1 + y,

where y ∈ C is a point such that c(y) − c(x3md) is not torsion in CH0(C). Note that such y
exists since there are only countable many torsion points in CH0(C) and for every x ≠ y ∈ C,
c(x) ̸= c(y) ∈ CH0(C). Hence,

⋃
t∈CH0(C)tor

σ̄−1
3md(t) ⊆ C(3md) is a countable union of proper

closed algebraic subsets. We have argued above that |3mH| ∩ C contains a Zariski open subset of
C(3md), thus a very general member Z ∈ |3mH| ∩ C satisfies σ3md(Z,Z2) ̸= 0 in CH0(C)Q. Hence,
mKX |C ̸= 0 in CH0(C)Q. But by assumption mKX |C = 0 in CH0(C)Q, thus C has to be a rational
curve. In case C is not smooth, we can argue in the same way by replacing C by its normalization
and the restriction to C by the composition of restriction and pullback to the normalization. □
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Proof of Theorem 1.1 (iii). Assume for contradiction that S ∈ Db(X) is a spherical object. By
Lemma 2.2, S is supported on a connected curve C = Ci such that KX |Ci

= 0 ∈ CH1(Ci)Q for
all irreducible components Ci of C. By Lemma 3.2, each Ci is rational, thus by Proposition 2.4
Ci ·KX ̸= 0. This contradicts to KX |Ci = 0 in CH1(Ci)Q. □

Proof of Theorem 1.1 (i) and (ii). Let ϕ : Db(Y ) → Db(X) be an equivalence. For any point y ∈ Y
the skyscraper sheaf k(y) satisfies k(y)⊗ ωY

∼= k(y) and thus ϕ(k(y))⊗ ωX
∼= ϕ(k(y)). Moreover,

since C = Hom(k(y), k(y)) = Hom(ϕ(k(y)), ϕ(k(y))), [Huy06, Lem. 3.9] shows that Supp(ϕ(k(y))
is connected. Arguing as in Lemma 2.2, we observe that Supp(ϕ(k(y))) is either a point or
Supp(ϕ(k(y))) =

⋃
i Ci, where each Ci is an integral curve with KX |Ci

= 0 ∈ CH1(Ci)Q. In the
latter case each Ci is rational by Lemma 3.2. By Proposition 2.4, Ci ·KX ̸= 0. Hence, ϕ(k(y)) is
supported on a point x ∈ X and by [Huy06, Lem. 4.5] ϕ(k(y)) = k(x)[m] for some m ∈ Z. Moreover,
by [Huy06, Cor. 6.14] the locus of y ∈ Y such that ϕ◦ [−m](k(y)) is a skyscraper sheaf is open. Since
Y is connected, this locus is the whole of Y , which shows that the shift m in ϕ(k(y)) = k(x)[m] is
independent of y ∈ Y . Thus ϕ ◦ [−m] sends skyscraper sheaves to skyscraper sheaves and [BM17,
§ 3.3] (or [Huy06, Cor. 5.23]) shows that ϕ ◦ [−m] = f∗(L⊗−) for some line bundle L ∈ Pic(Y ) and
isomorphism f : Y → X. This proves (ii) and shows that in the case Y = X the autoequivalence ϕ
is a standard autoequivalence. Thus, (i) follows. □

Remark 3.3 (On the position of blown up points). We assumed the blown up points in Theorem 1.1
to be in very general position. On the one hand, this is required in de Fernex’ Proposition 2.3 to
ensure that X admits no (−2)-curves. On the other hand, Lemma 3.2 relies on [Mig01, Thm. 1]
which requires the blown up points to be in general position.

4. Alternative Proof of Theorem 1.1 (i) and (ii)

An alternative proof of Theorem 1.1 (i) and (ii), which is more dependent on the literature, can
be obtained using [Ueh19, Thm. 1, Thm. 2] and [Kaw02] as we outline in the following:

Second proof of Theorem 1.1 (i) and (ii). Recall, e.g. from [CD12, Prop. 2.2], that if Y is a rational
surface admitting a minimal elliptic fibration, then Y can be obtained from P2

C by blowing up 9,
possibly infinitely near, points and, for some m > 0, the linear system |−mKY | is a pencil. Hence,
if X is the blow-up of P2

C in a finite set of points in very general position, then X admits no minimal
elliptic fibration. Indeed, this is clear if the number of blown up points is different from 9. In the
case of 9 blown up points the linear system |−mKX | is zero-dimensional for any m > 0, so it is not
a pencil. By [Kaw02, Thm. 1.6], a non-minimal surface admits nontrivial Fourier–Mukai partners
only if it admits a minimal elliptic fibration. Hence, Theorem 1.1 (ii) follows.

Let Y be any surface and let ΦP : Db(Y ) → Db(Y ) be an autoequivalence with Fourier–Mukai
kernel P ∈ Db(Y × Y ). We denote by Comp(ΦP ) the set of irreducible components in Supp(P ) ↪→
Y × Y and by

NY := max{dimW | W ∈ Comp(ΦP ),ΦP ∈ Aut(Db(Y ))}
the Fourier–Mukai support dimension of Y . By Uehara’s classification [Ueh19, Thm. 1], the equality
NY = 2 is equivalent to Y admitting no minimal elliptic fibration and KY being not numerically
equivalent to zero. Hence, for X the blow-up of P2

C in a finite set of points in very general position
we have NX = 2.

If Y is a surface with NY = 2 such that the union of all (−2)-curves in Y forms a disjoint
union of configurations of type A, then, by [Ueh19, Thm. 2], Aut(Db(Y )) is generated by standard
autoequivalences and spherical twists. ForX the blow-up of P2

C in a finite set of points in very general
position, de Fernex’ Proposition 2.3 shows that X contains no (−2)-curve. Hence, Theorem 1.1 (i)
follows. □

5. Surfaces of Nonnegative Kodaira Dimension

5.1. Autoequivalences. In contrast to the case of negative Kodaira dimension, blowing up points
in arbitrary position on minimal surfaces of nonnegative Kodaira dimension does not give rise to
new (−2)-curves.
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Proposition 5.1. Let Y be a minimal surface of nonnegative Kodaira dimension and let p : X → Y
be the blow-up of Y in a set of points p1, . . . , pn ∈ Y . Then every (−2)-curve C in X is the strict
transform of a (−2)-curve C0 in Y such that pi /∈ C0 for 1 ≤ i ≤ n.

Proof. We denote by Ei the exceptional divisor over the i-th blown up point pi for 1 ≤ i ≤ n. Let
C ⊆ X be a (−2)-curve. By adjunction, we have

0 = g(C) = 1 +
1

2
(C2 + C ·KX),

where g(C) denotes the geometric genus of C. Thus, C ·KX = 0. Further, since C is not one of
the exceptional curves Ei, C is the strict transform of a curve C0 ⊆ Y . We have

0 = C ·KX = C0 ·KY +

n∑
i=1

mi,

where mi is the multiplicity of C0 at pi. Since KY is nef, each of the mi is zero, in other words
pi /∈ C0 for 1 ≤ i ≤ n. We conclude that C0 is a smooth rational curve with KY ·C0 = 0, hence, by
adjunction, a (−2)-curve. □

As a consequence of Proposition 5.1 and [Ueh19], we obtain the following

Theorem 5.2. Let Y be a minimal surface of nonnegative Kodaira dimension and let X be the
blow-up of Y in a nonempty finite set of points. Assume Y contains no (−2)-curves, e.g. Y has
Kodaira dimension 1 and the elliptic fibration of Y has only irreducible fibers. Then Db(X) admits
only standard autoequivalences, i.e.

Aut(Db(X)) = Pic(X)⋊Aut(X)× Z[1].

Proof. By Proposition 5.1, X contains no (−2)-curves. Thus, the statement follows from [Ueh19,
Thm. 1.1, Thm. 1.3] if X admits no minimal elliptic fibration. The latter can be shown as follows:
Recall, e.g. from [CDL23, Cor. 4.1.7], that a surface S with minimal elliptic fibration satisfies
K2

S = 0. If κ(Y ) = 0, then KY is numerically equivalent to zero. Hence, K2
Y = 0 and therefore

K2
X < 0. If κ(Y ) = 1, then Y has an elliptic fibration and therefore K2

Y = 0. Hence, K2
X < 0.

Finally, if κ(Y ) = 2, then X has no elliptic fibration by [Bar+04, Prop. 12.5]. □

Remark 5.3. Note that the description of autoequivalences as in Theorem 5.2 is not true for a
minimal surface Y . For example, if κ(Y ) = 1, then Aut(Db(Y )) can be characterized as in [Ueh16,
Thm. 4.1]. In that case, as outlined in the proof of [Ueh19, Thm. 1.1], Y admits an autoequivalence
ΦU where U is the universal sheaf on Y × JY (1, 1) and JY (1, 1) ∼= Y is a moduli space of stable
sheaves on a smooth fiber of the elliptic fibration of Y . In this case, the support of U is 3-dimensional,
thus ΦU does not lift to an autoequivalence of a blow-up of Y .

Remark 5.4 (Infinitely near points). Let X be a non-minimal surface of nonnegative Kodaira
dimension with minimal model Y . If the (−2)-curves in Y only form chains of type A, then it is
possible to describe Aut(Db(X)) as in [Ueh19, Thm. 1.3]. Indeed, arguing as in [IU05, Thm. 1.5]
one shows that the (−2)-curves in X only form chains of type A. Thus, [Ueh19, Thm. 1.3] applies
and shows that Aut(Db(X)) is generated by standard autoequivalences and spherical twists.

5.2. Spherical Objects. Similar to Proposition 5.1, spherical objects in the blow-up of a minimal
surface of positive Kodaira dimension are completely determined by the minimal surface.

We begin with recalling two elementary Lemmata 5.5 and 5.6 regarding morphisms and the
support of complexes of sheaves. As we were unable to find a suitable statement in the literature,
we include a proof of Lemma 5.5.

Lemma 5.5. Let X be a smooth projective variety and let F,G ∈ Db(X).

(i) If Supp(F ) ∩ Supp(G) = ∅, then HomDb(X)(F,G) = 0.
(ii) If D ⊆ X is a divisor and Supp(F ) ∩D = ∅, then F ⊗ OX(D) = F .
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Proof. We first prove (i). The condition Supp(F )∩Supp(G) = ∅ implies ExtpOX
(H−q(F ),Hl(G)) = 0

for all p, q, l ∈ Z. Recall, e.g. from [Huy06, p. 77], that we have a spectral sequence

Ep,q
2 = ExtpOX

(H−q(F ),Hl(G)) ⇒ Extp+q
OX

(F,Hl(G))

for every l ∈ Z. Similarly, we have a spectral sequence

Ep,q
2 = ExtpOX

(F,Hq(G)) ⇒ Extp+q
OX

(F,G).

Thus, Supp(F ) ∩ Supp(G) = ∅ implies Ext lOX
(F,G) = 0 for all l ∈ Z. Finally, the local-to-global

spectral sequence

Ep,q
2 = Hp(X,ExtqOX

(F,G)) ⇒ Extp+q
OX

(F,G)

shows Extp+q
OX

(F,G) = 0.

To prove (ii), assume that D ⊆ X is a divisor and that Supp(F ) ∩ D = ∅. The ideal sheaf
sequence

0 → OX(−D) → OX → OD → 0

yields an exact sequence

0 → HomOX
(OD, F ) → F → F ⊗ OX(D) → Ext1OX

(OD, F ) → 0.

As argued above, we have HomOX
(OD, F ) = 0 = Ext1OX

(OD, F ). Hence, F → F ⊗ OX(D) is an
isomorphism. □

Lemma 5.6 ([BM02, Lem. 5.3]). Let X be a smooth projective variety and F ∈ Db(X). Then a
point x ∈ X lies in Supp(F ) if and only if HomDb(X)(F, k(x)[l]) ̸= 0 for some l ∈ Z.

The following Proposition 5.7 characterizes spherical objects in blow-ups of minimal surfaces of
positive Kodaira dimension.

Proposition 5.7. Let Y be a minimal surface of positive Kodaira dimension and let p : X → Y be
the blow-up of Y in a set of points p1, . . . , pn ∈ Y . Then every spherical object in Db(X) is of the
form Lp∗S for some spherical object S ∈ Db(Y ). Moreover, if S ∈ Db(Y ) is spherical, then Lp∗S is
spherical if and only if pi /∈ Supp(S) for all 1 ≤ i ≤ n.

Proof. We denote by Ei the exceptional divisor over the i-th blown up point pi for 1 ≤ i ≤ n. We
first prove the following

Claim. If S′ ∈ Db(X) is a spherical object, then Supp(S′) is disjoint from each Ei.

Proof of the claim. Assume S′ ∈ Db(X) is spherical, then, by Lemma 2.2, Supp(S′) =
⋃

i Ci, where
each Ci is an integral curve with KX · Ci = 0. Since KX = p∗KY +

∑
i Ei, such curve Ci is the

strict transform of a curve in Y . Moreover, if C0 is a curve in Y , the strict transform of C0 has
class p∗C0 −

∑
i miEi, where mi is the multiplicity of C0 at pi. We compute that

KX ·

(
p∗C0 −

n∑
i=1

miEi

)
= KY · C0 +

n∑
i=1

mi.

Since KY is nef, we have KY · C0 ≥ 0 and therefore pi /∈ C0 for all 1 ≤ i ≤ n. □

Recall that Db(X) admits a semiorthogonal decomposition

Db(X) = ⟨OE1(−1), . . . ,OEn(−1),Lp∗Db(Y )⟩.
Since Supp(S′) is disjoint from each Ei, we have, by Lemma 5.5,

HomDb(X)(S
′,OEi

(−1)[l]) = 0 = HomDb(X)(OEi
(−1), S′[l])

for every l ∈ Z. Hence, S′ ∈ Lp∗Db(Y ), i.e., there exists a object S ∈ Db(Y ) such that Lp∗S ∼= S′.
Note that Rp∗OX = OY implies

HomDb(X)(S
′, S′[l]) = HomDb(X)(Lp

∗S,Lp∗S[l]) = HomDb(Y )(S,Rp∗Lp
∗S[l])(5.8)

= HomDb(Y )(S, S ⊗L Rp∗OX [l]) = HomDb(Y )(S, S[l]).
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for every l ∈ Z. Moreover, since Supp(S′) is disjoint from the exceptional divisors Ei, Lemma 5.5
shows that Lp∗S ⊗ OX(

∑
i Ei) = Lp∗S. Hence, Lp∗S ⊗ p∗ωY

∼= Lp∗S. Pushing forward via Rp∗
and using the projection formula shows that S ⊗ ωY

∼= S. Thus, S is a spherical object in Db(Y ).
Now let S ∈ Db(Y ) be a spherical object. As in (5.8), we have

HomDb(X)(Lp
∗S,Lp∗S[l]) = HomDb(Y )(S, S[l])

for every l ∈ Z. Thus, Lp∗S is spherical if Lp∗S ⊗ ωX
∼= Lp∗S. Let x ∈ X be a point, then

Rp∗k(x) = k(p(x)) and by adjunction

HomDb(X)(S,Rp∗k(x)[l]) = HomDb(X)(Lp
∗S, k(x)[l])

for every l ∈ Z. Hence, Lemma 5.6 shows that Supp(Lp∗S) = p−1(Supp(S)). By the previous claim,
it is necessary that p−1(Supp(S)) is disjoint from each Ei for Lp

∗S to be spherical. On the other
hand, this is also sufficient, since Lp∗S ⊗ OX(

∑
i Ei) = Lp∗S holds by Lemma 5.5 if p−1(Supp(S))

is disjoint from each Ei. □

Remark 5.9. Let Y be a minimal surface of Kodaira dimension 1 whose elliptic fibration has
only irreducible fibers. It follows from the description of Aut(Db(Y )) in [Ueh16] that Db(Y ) does
not contain spherical objects. Thus, if X is a blow-up of Y in a finite set of points, then, by
Proposition 5.7, Db(X) does not contain spherical objects either. Alternately, this can also be
deduced from Theorem 5.2.
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