SMALLNESS PROPERTIES AND LOCALLY COMPLETE INTERSECTIONS

Based on: Local to global principles for generation time over Noether algebras, arXiv:1906.06104

Generation $\diamond A$ full subcategory \mathcal{S} is *thick* if it is closed under: - direct summands, - suspensions, Proof sketch: - cones. (1) \implies (2): R c.i. \diamond thick_{\mathcal{T}}(X) = smallest thick subcategory (2) \implies (1): For X of \mathcal{T} containing X. $D(R^e)$ — ♦ If $Y \in \text{thick}_{\mathcal{T}}(X)$, then X generates Y. Write $X \models= Y$. This is constructive: $R^e \models W$ finite direct sums $X \xrightarrow{\text{summands}}_{\text{suspensions}} Y$. $R \models^{R^e} W$ cones So $W \otimes_B^{\mathbf{L}} X$ is small $\diamond \operatorname{level}_{\mathcal{T}}^X(Y) = \operatorname{minimal number of cones}$ Examples If R = Q/I with Q regular, then 1. Perf(R) = perfect complexesThen $\operatorname{thick}_R(R) = \operatorname{Perf}(R)$. $\diamond R$ generates $R \otimes_{O}^{\mathbf{L}} R$ with If M is a f.g. R-module then $\operatorname{level}_{R}^{R}(M) = \operatorname{pd}_{R}(M) + 1.$

2. thick_R(k) = complexes with bounded finite length homology.

Theorem

If $X, Y \in D_f(R)$ then TFAE $(1) X \models Y,$ (2) $X_{\mathfrak{p}} \models Y_{\mathfrak{p}} \forall \mathfrak{p} \in \operatorname{Spec}(R).$ Characterizations

TFAE (1) R regular, (2) every object in

Janina C. Letz

Theorem

Let R be a k-algebra essentially of finite type over k. Then TFAE

(1) R is a locally complete intersection,

(2) R is proxy small in $D(R^e)$ where $R^e = R \otimes_k R$.

Support \leftarrow Localizing subcategory.

 $\diamond R \otimes_{O}^{\mathbf{L}} R$ is a small object in $\mathcal{D}(R^{e})$, $\sup\{\operatorname{codim}(R_{\mathfrak{m}})|\mathfrak{m}\in\operatorname{Max}(R)\}+1\leq\operatorname{level}_{R^{e}}^{R}(R\otimes_{Q}^{\mathbf{L}}R)\leq\sup\{\operatorname{ht}(I_{\mathfrak{m}})|\mathfrak{m}\in\operatorname{Max}(R)\}+1.$

		1
	TFAE	
	(1) R a locally complete intersection,	
$D_f(R)$ is small.	(2) every object in $D_f(R)$ is proxy small.	

Proxy small objects

A complex $X \in D(R)$ is *small* if

 $R \models X$.

A complex $X \in D(R)$ is proxy small if there exists a small object W, such that $X \models W$ and $\operatorname{Supp}_R(W) = \operatorname{Supp}_R(X)$.

Examples

1. small \implies proxy small. 2. (R, \mathfrak{m}, k) local, and $K^R = \text{Koszul complex. Then}$ (a) $k \models K^R$. (b) $\operatorname{Supp}_R(K^R) = {\mathfrak{m}} = \operatorname{Supp}_R(k).$

Lemma

For $X \in D_f(R)$ TFAE (1) X is proxy small, (2) $X_{\mathfrak{p}}$ is proxy small $\forall \mathfrak{p} \in \operatorname{Spec}(R)$.

References

[1] W. G. Dwyer, J. P. C. Greenlees, and S. B. Iyengar. Finiteness in derived categories of local rings. Comment. Math. Helv., 81(2):383-432, 2006.

- [2] A. Neeman. The chromatic tower for D(R). Topology, 31(3):519-532, 1992. With an appendix by Marcel Bökstedt.
- [3] J. Pollitz. The derived category of a locally complete intersection ring. Adv. Math., 354:106752, 2019.