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Theorem

Let R be a Noether algebra with center Z(R). For any objects G
and X in Df(R), there is an equality

level§(X) = sup {level (xp)‘p € Spec(Z(R)) } .
Moreover

G |: X = G |: Xy, for all prime ideals p in Z(R).
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A local ring R is a complete intersection if and only if every
nontrivial object of D¢(R) is virtually small.

Finiteness in derived categories of local rings
W. Dwyer, J. P. C. Greenlees and S. Iyengar™

9.10 Question. Over a local ring R, if each homologically finite complex is virtually
small, then is R complete intersection?
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Proof sketch.
2 = 1. X € D¢(R), need to show: X proxy small in D(R)

— ®k X: D(R®) — D(R) gives

D(R
X |¥ P @% X perfect Locg(X) = Locg(P ®k X)
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