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Theorem
Let R be a Noether algebra with center Z(R). For any objects G
and X in Df (R), there is an equality

levelGR (X ) = sup
{

level
Gp

Rp
(Xp)

∣∣∣p ∈ Spec(Z(R))
}
.

Moreover

G X ⇐⇒ Gp Xp for all prime ideals p in Z(R) .



Theorem (Pollitz, 2018)

A local ring R is a complete intersection if and only if every
nontrivial object of Df (R) is virtually small.



Theorem (Pollitz, 2018)

A local ring R is a complete intersection if and only if every
nontrivial object of Df (R) is virtually small.



Theorem
Let k be a field and R a commutative k-algebra essentially of finite
type over k . Then the following are equivalent

1. R is a locally complete intersection

smooth

2. R is proxy small in D(Re).

Proof sketch.
1 =⇒ 2:

R complete intersection
=⇒ Re complete intersection
=⇒ R proxy small in D(Re)



Theorem
Let k be a field and R a commutative k-algebra essentially of finite
type over k . Then the following are equivalent

1. R is a locally complete intersection

smooth

2. R is proxy small in D(Re).

Proof sketch.
2 =⇒ 1: X ∈ Df (R), need to show: X proxy small in D(R)
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